Qualcom

RF360 Europe GmbH

Data sheet

E-Duplexer Small cell LTE band 3

Series/type:	D7906
Ordering code:	B39182D7906D310
Date:	July 27, 2018
Version:	2.0

RF360 products mentioned within this document are products of RF360 Europe GmbH and other subsidiaries of RF360 Holdings Singapore Pte. Ltd. (collectively, the "RF360 Subsidiaries").

These materials, including the information contained herein, may be used only for informational purposes by the customer. The RF360 Subsidiaries assume no responsibility for errors or omissions in these materials or the information contained herein. The RF360 Subsidiaries reserve the right to make changes to the product(s) or information contained herein without notice. The materials and information are provided on an AS IS basis, and the RF360 Subsidiaries assume no liability and make no warranty or representation, either expressed or implied, with respect to the materials, or any output or results based on the use, application, or evaluation of such materials, including, without limitation, with respect to the non-infringement of trademarks, patents, copyrights or any other intellectual property rights or other rights of third parties.

No use of this documentation or any information contained herein grants any license, whether express, implied, by estoppel or otherwise, to any intellectual property rights, including, without limitation, to any patents owned by QUALCOMM Incorporated or any of its subsidiaries.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of RF360 Europe GmbH.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

RF360 Europe GmbH A Qualcomm – TDK Joint Venture

Data sheet

E-Duplexer Small cell LTE band 3

Series/type:	D7906
Ordering code:	B39182D7906D310
Date:	July 27, 2018
Version:	2.0

RF360 products mentioned within this document are products of RF360 Europe GmbH and other subsidiaries of RF360 Holdings Singapore Pte. Ltd. (collectively, the "RF360 Subsidiaries").

RF360 Holdings Singapore Pte. Ltd. is a joint venture of Qualcomm Global Trading Pte. Ltd. and EPCOS AG.

RF360 Europe GmbH, Anzinger Str. 13, München, Germany

 $\ensuremath{\mathbb{C}}$ 2018 RF360 Europe GmbH and/or its affiliated companies. All rights reserved.

These materials, including the information contained herein, may be used only for informational purposes by the customer. The RF360 Subsidiaries assume no responsibility for errors or omissions in these materials or the information contained herein. The RF360 Subsidiaries reserve the right to make changes to the product(s) or information contained herein without notice. The materials and information are provided on an AS IS basis, and the RF360 Subsidiaries assume no liability and make no warranty or representation, either expressed or implied, with respect to the materials, or any output or results based on the use, application, or evaluation of such materials, including, without limitation, with respect to the non-infringement of trademarks, patents, copyrights or any other intellectual property rights or other rights of third parties.

No use of this documentation or any information contained herein grants any license, whether express, implied, by estoppel or otherwise, to any intellectual property rights, including, without limitation, to any patents owned by QUALCOMM Incorporated or any of its subsidiaries.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of RF360 Europe GmbH.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

Table of contents

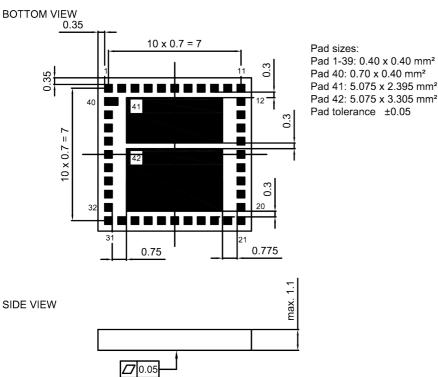
1 Application	4
2 Features	4
3 Package	5
3 <u>Package</u> 4 <u>Pin configuration</u>	6
5 <u>Matching circuit</u>	
6 <u>Characteristics</u> .	
7 Maximum ratings	
8 <u>Transmission coefficients</u>	
9 <u>Reflection coefficients</u>	
10 EVMs	
10 <u>EVMs</u> 11 <u>Packing material</u>	
12 Marking	
13 <u>Soldering profile</u>	26
14 Annotations	27
15 <u>Cautions and warnings</u>	
16 Important notes	

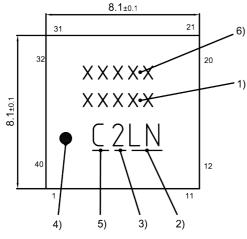
Qualcomm RF360 Europe GmbH A Qualcomm – TDK Joint Venture

1 Application

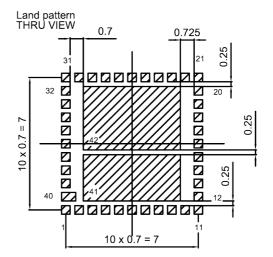
- Enhanced duplexer for LTE small cell systems (Band 3)
- Low VSWR
- Usable pass band 75 MHz
- Rx = uplink = 1710 MHz 1785 MHz
- Tx = downlink = 1805 MHz 1880 MHz

2 Features


- Package size 8.1±0.1 mm × 8.1±0.1 mm
- Package height 1.1 mm (max.)
- Approximate weight 0.2 g
- RoHS compatible
- Package for Surface Mount Technology (SMT)
- Ni/Au-plated terminals
- Electrostatic Sensitive Device (ESD)
- Moisture Sensitivity Level 3 (MSL3)


Figure 1: Picture of component with example of product marking.

3 Package



TOP VIEW

6) Tracking ID (5 - 8 digits)

- 5) Indicating production site C=Wxi)
- 4) Marking for pad number
- 3) Date code acc. EPCOS (day)
- 2) Date code acc. to EN60062 (year, month)
- 1) Position for type designation

Landing pad sizes: Pad 1-39: 0.45 x 0.45 mm² Pad 40: 0.70 x 0.40 mm² Pad 41: 5.125 x 2.445 mm² Pad 42: 5.125 x 3.355 mm² Landing pad tolerance -0.02

Figure 2: Drawing of package with package height A = 1.1 mm (max.). See Sec. Package information (p. 28).

Pad 40: 0.70 x 0.40 mm²

Pad 41: 5.075 x 2.395 mm²

Qualconversion RF360 Europe GmbH A Qualcomm – TDK Joint Venture

4 Pin configuration

- 3 TX
- 13 RX
- 29 ANT
- 1, 2, 4, 5, Ground
 - 6, 7, 8, 9,
 - 10, 11,
 - 12, 14,
 - 15, 16,
 - 17, 18,
 - 19, 20,
 - 21, 22,
 - 23, 24, 25, 26,
 - 27, 28,
 - 30, 31,
 - 32, 33,
 - 34, 35,
 - 36, 37,
 - 38, 39,
 - 40, 41, 42

5 Matching circuit

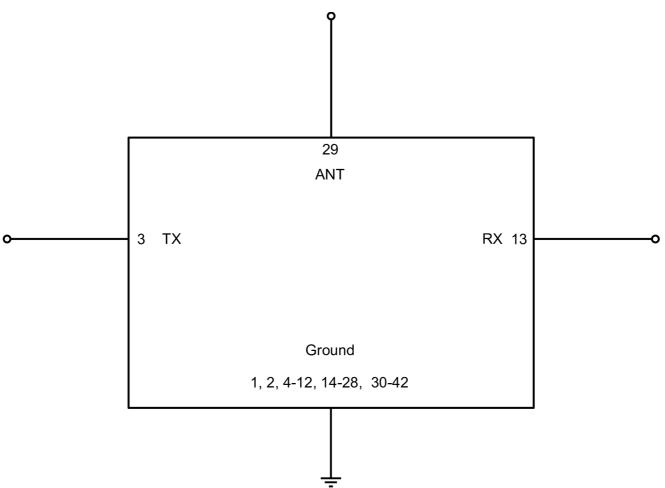


Figure 3: Schematic of matching circuit. No external matching components required.

Qualcomm RF360 Europe GmbH A Qualcomm – TDK Joint Venture

6 Characteristics

6.1 TX – ANT

Temperature range for specification	$T_{_{\rm SPEC}}$	= −10 °C +85 °C
TX terminating impedance	Z _{TX}	= 50 Ω
ANT terminating impedance	Z	= 50 Ω
RX terminating impedance	Z _{RX}	= 50 Ω

Characteristics TX – ANT				min. for $T_{\rm SPEC}$	typ. @ +25 °C	max. for $T_{\rm SPEC}$	
Center frequency			f _c	_	1842.5		MHz
Average insertion attenuation			$\alpha_{INT,avg}^{(1)}$				
	1805 1810	MHz	, J	_	3.3	4.2	dB
	1810 1875	MHz		_	3.1	3.8	dB
	1875 1880	MHz		_	3.0	3.8	dB
Maximum insertion attenuation			α_{max}				
	1805.24 1879.76	MHz		—	3.6	5.0	dB
	1810 1875	MHz		_	3.3	4.0	dB
Amplitude ripple (p-p)			Δα				
	1805.24 1879.76	MHz			1.6	3.2	dB
Maximum VSWR			VSWR _{max}				
@ TX port	1805.24 1879.76	MHz		_	1.3	1.7	
@ ANT port	1805.24 1879.76	MHz		_	1.2	1.4	
Maximum error vector magnitude			EVM _{max} ²⁾				
	1807.4 1877.6	MHz		_	1.5	4.0	%
Minimum attenuation			α _{min}				
	10 1710	MHz		30	38	—	dB
	1710.24 1745	MHz		42	50	—	dB
	1745 1775	MHz		45	53	_	dB
	1775 1780	MHz		42	50	_	dB
	1780 1784.76	MHz		35	45	_	dB
	1900 1911	MHz		6	20	_	dB
	1911 1920	MHz		35	59	_	dB
	1920 1980	MHz		40	51	—	dB
	1980 2500	MHz		35	45	—	dB
	2500 3740	MHz		35	47	—	dB
	3740 5150	MHz		30	42	_	dB
	5150 5725	MHz		30	42	_	dB

¹⁾ Integrated attenuation α_{INT} : Averaged power $|S_{ij}|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels.

²⁾ Error Vector Magnitude (EVM) based on definition in 3GPP TS 25.141.

Qualconn

RF360 Europe GmbH A Qualcomm – TDK Joint Venture

Temperature range for specification	T _{SPEC}	= −40 °C +95 °C
TX terminating impedance	Z _{TX}	= 50 Ω
ANT terminating impedance	Z _{ANT}	= 50 Ω
RX terminating impedance	Z _{RX}	= 50 Ω

Characteristics TX – ANT				min. for $T_{\rm SPEC}$	typ. @ +25 °C	max. for $T_{\rm SPEC}$	
Average insertion attenuation			α ¹⁾ INT,avg				
	1805 1810	MHz		—	3.3	4.7	dB
	1810 1875	MHz		_	3.1	4.0	dB
	1875 1880	MHz		_	3.0	4.0	dB
Maximum insertion attenuation			α_{max}				
	1805.24 1879.76	MHz		_	3.6	6.0	dB
	1810 1875	MHz		—	3.3	5.0	dB
Amplitude ripple (p-p)			Δα				
	1805.24 1879.76	MHz		_	1.6	4.5	dB
Maximum VSWR			VSWR _{max}				
@ TX port	1805.24 1879.76	MHz		_	1.3	1.7	
@ ANT port	1805.24 1879.76	MHz		_	1.2	1.7	
Maximum error vector magnitude			EVM _{max} ²⁾				
	1807.4 1877.6	MHz		_	1.5	5.7	%
Minimum attenuation			α _{min}				
	10 1710	MHz		30	38	_	dB
	1710.24 1745	MHz		42	50	—	dB
	1745 1775	MHz		45	53	_	dB
	1775 1780	MHz		42	50	_	dB
	1780 1784.76	MHz		30	45	_	dB
	1900 1911	MHz		4	20	_	dB
	1911 1920	MHz		28	59	_	dB
	1920 1980	MHz		40	51	—	dB
	1980 2500	MHz		35	45	—	dB
	2500 3740	MHz		35	47	—	dB
	3740 5150	MHz		30	42	—	dB
	5150 5725	MHz		30	42	—	dB

¹⁾ Integrated attenuation α_{INT} : Averaged power $|S_{ij}|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels.

²⁾ Error Vector Magnitude (EVM) based on definition in 3GPP TS 25.141.

6.2 ANT – RX

Temperature range for specification	$T_{_{\rm SPEC}}$	= −10 °C +85 °C
TX terminating impedance	Z_{Tx}	= 50 Ω
ANT terminating impedance	Z	= 50 Ω
RX terminating impedance	Z _{RX}	= 50 Ω

Characteristics ANT – RX				min. for $T_{_{\rm SPEC}}$	typ. @ +25 °C	max. for $T_{\rm SPEC}$	
Center frequency			f _c		1747.5		MHz
Average insertion attenuation			$\alpha_{\rm INT,avg}^{\ 1)}$				
	1710 1715	MHz		—	3.5	5.0	dB
	1715 1780	MHz		_	4.0	5.5	dB
	1780 1785	MHz		—	4.4	6.3	dB
Maximum insertion attenuation			α_{max}				
	1710.24 1784.76	MHz		—	4.7	7.2	dB
	1715 1775	MHz		—	3.6	4.6	dB
Amplitude ripple (p-p)			Δα				
	1710.24 1784.76	MHz		_	2.3	4.5	dB
Maximum VSWR			VSWR _{max}				
@ ANT port	1710.24 1784.76	MHz		—	1.3	1.5	
@ RX port	1710.24 1784.76	MHz		—	1.5	1.7	
Maximum error vector magnitude			EVM _{max} ²⁾				
	1712.4 1782.6	MHz		—	1.9	4.8	%
Minimum attenuation			α_{min}				
	10 1660	MHz		40	50	—	dB
	1660 1690	MHz		30	37	—	dB
	1805.24 1840	MHz		40 ³⁾	59	_	dB
	1840 1879.76	MHz		45	60	_	dB
	1880 2400	MHz		40	46	—	dB
	2400 2500	MHz		40	51	—	dB
	2500 3550	MHz		35	53	—	dB
	3550 4200	MHz		35	47	—	dB
	4200 5325	MHz		32	41	—	dB

1) Integrated attenuation α_{INT} : Averaged power $|S_{ij}|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels.

2) Error Vector Magnitude (EVM) based on definition in 3GPP TS 25.141. Valid for temperature range +15 °C ... +85 °C.

3)

Qualcom

RF360 Europe GmbH A Qualcomm – TDK Joint Venture

Temperature range for specification	$T_{_{\rm SPEC}}$	= −40 °C +95 °C
TX terminating impedance	Z _{TX}	= 50 Ω
ANT terminating impedance	Z _{ANT}	= 50 Ω
RX terminating impedance	Z _{RX}	= 50 Ω

Characteristics ANT – RX				min. for $T_{\rm SPEC}$	typ. @ +25 °C	max. for $T_{\rm SPEC}$	
Average insertion attenuation			α ¹⁾ INT,avg				
	1710 1715	MHz		_	3.5	6.0	dB
	1715 1780	MHz		_	4.0	6.0	dB
	1780 1785	MHz		_	4.4	7.0	dB
Maximum insertion attenuation			$\alpha_{_{max}}$				
	1710.24 1784.76	MHz		—	4.7	8.0	dB
	1715 1775	MHz		—	3.6	5.5	dB
Amplitude ripple (p-p)			Δα				
	1710.24 1784.76	MHz		_	2.3	5.3	dB
Maximum VSWR			VSWR				
@ ANT port	1710.24 1784.76	MHz		—	1.3	1.7	
@ RX port	1710.24 1784.76	MHz		—	1.5	1.7	
Maximum error vector magnitude			EVM _{max} ²⁾				
	1712.4 1782.6	MHz		—	1.9	7.8	%
Minimum attenuation			$\alpha_{_{min}}$				
	10 1660	MHz		40	50	_	dB
	1660 1690	MHz		25	37	—	dB
	1805.24 1840	MHz		20	59	_	dB
	1840 1879.76	MHz		45	60	_	dB
	1880 2400	MHz		40	46	—	dB
	2400 2500	MHz		40	51	—	dB
	2500 3550	MHz		35	53	—	dB
	3550 4200	MHz		35	47	—	dB
	4200 5325	MHz		32	41	—	dB

¹⁾ Integrated attenuation α_{INT} : Averaged power $|S_{ij}|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels.

²⁾ Error Vector Magnitude (EVM) based on definition in 3GPP TS 25.141.

6.3 TX – RX

Temperature range for specification	$T_{_{\rm SPEC}}$	= −10 °C +85 °C
TX terminating impedance	Z _{TX}	= 50 Ω
ANT terminating impedance	Z	= 50 Ω
RX terminating impedance	Z _{PX}	= 50 Ω

Characteristics TX – RX				min. for $T_{_{\rm SPEC}}$	typ. @ +25 °C	max. for $T_{\rm SPEC}$	
Average isolation			α ¹⁾ INT,avg				
	1710 1785	MHz		60	66	—	dB
	1805 1815	MHz		60 ²⁾	66	—	dB
	1815 1880	MHz		60	66	_	dB
Minimum isolation			$\alpha_{_{min}}$				
	1710.24 1784.76	MHz		60	66	—	dB
	1805.24 1815	MHz		50 ³⁾	67	—	dB
	1815 1879.76	MHz		60	65	—	dB

1) Integrated attenuation $\alpha_{_{INT}}$: Averaged power $|S_{_{ij}}|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels.

2) Valid for temperature range +25 °C ... +85 °C. For -10°C...+25°C this value relaxes to 55 dB. Valid for temperature range +25 °C ... +85 °C. For -10°C...+25°C this value relaxes to 40 dB.

3)

Temperature range for specification	T _{SPEC}	= −40 °C +95 °C
TX terminating impedance	Z _{TX}	= 50 Ω
ANT terminating impedance	$Z_{_{ANT}}$	= 50 Ω
RX terminating impedance	Z _{RX}	= 50 Ω

Characteristics TX – RX				min. for $T_{\rm SPEC}$	typ. @ +25 °C	max. for $T_{\rm SPEC}$	
Average isolation			$\alpha_{\text{INT,avg}}^{ 1)}$				
	1710 1785	MHz		60	66	—	dB
	1805 1815	MHz		45	66	_	dB
	1815 1880	MHz		60	66	—	dB
Minimum isolation			$\alpha_{_{min}}$				
	1710.24 1784.76	MHz		55	66	_	dB
	1805.24 1815	MHz		50 ²⁾	67	_	dB
	1815 1879.76	MHz		60	65		dB

¹⁾ Integrated attenuation α_{iNT} : Averaged power $|S_{ij}|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels.

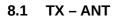
²⁾ Valid for temperature range +25 °C ... +95 °C. For -40°C...+25°C this value relaxes to 35 dB.

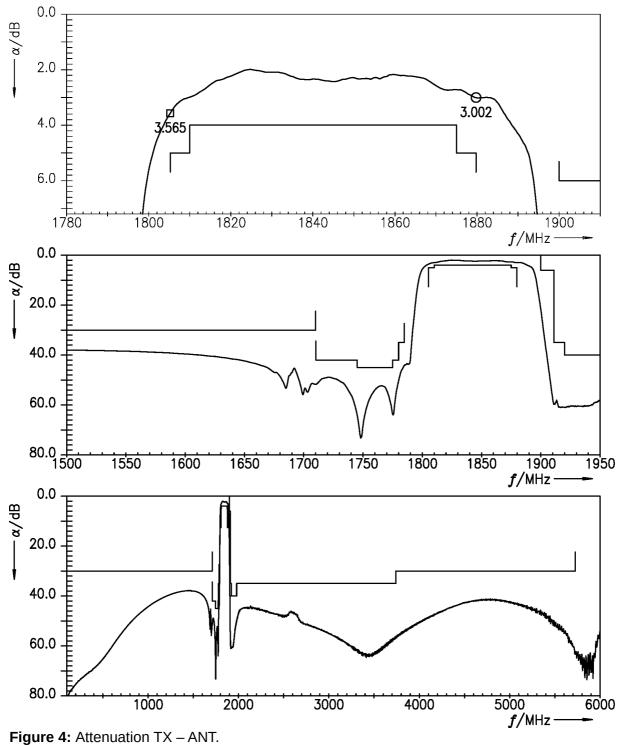
7 Maximum ratings

Operable temperature	<i>T</i> _{OP} = -40 °C +95 °C	
Storage temperature	<i>T</i> _{STG} ¹⁾ = −40 °C +95 °C	
DC voltage	$ V_{\rm DC} ^{2)} = 0 V$	
ESD voltage		
	$V_{\rm ESD}^{3)} = 100 \rm V$	Machine model.
	V _{ESD} ⁴⁾ = 100 V	Human body model.
Input power @ TX port: 1805.24 1879.76 MHz	$P_{\rm IN} = 31 \rm dBm^{5), 6)}$	5 MHz LTE downlink signal for 100000 h @ 55 °C. P _{IN} average – 42 dBm peak. Source and load impedance 50Ω .

¹⁾ Not valid for packaging material. Storage temperature for packaging material is -25 °C to +40 °C.

²⁾ In case of applied DC voltage blocking capacitors are mandatory.

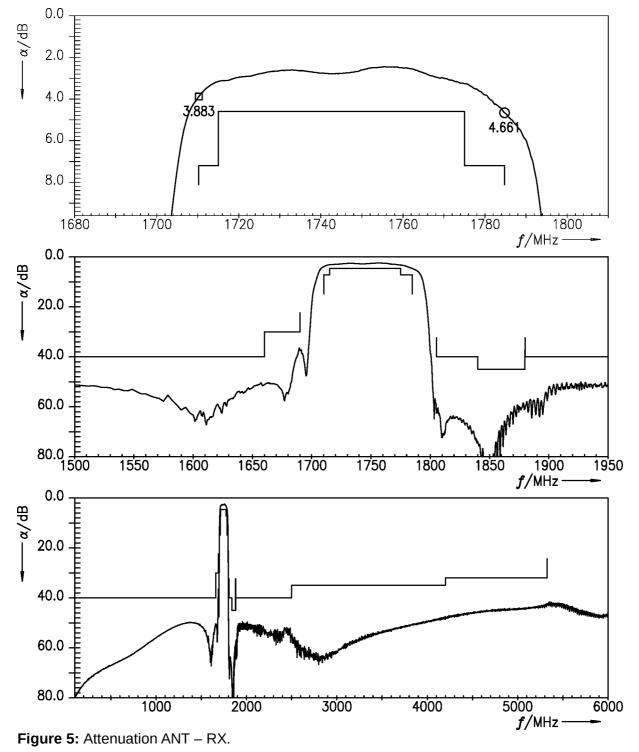

³⁾ According to JESD22-A115B (MM – Machine Model), 10 negative & 10 positive pulses.


⁴⁾ According to JESD22-A114F (HBM – Human Body Model), 1 negative & 1 positive pulse.

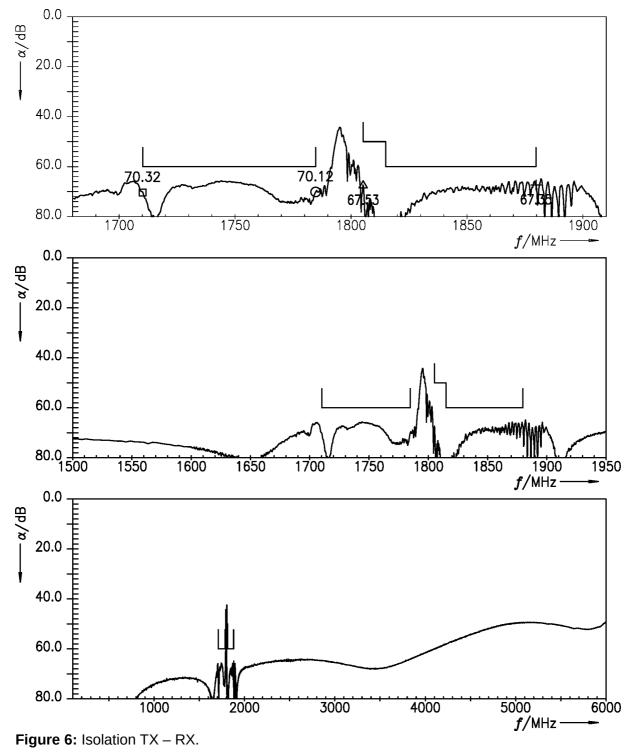
⁵⁾ Expected lifetime according to accelerated power durability tests, and wear out models.

⁶⁾ T_{SPEC} is the ambient temperature of the PCB at component position. Specified min./max values from section 6 "characteristics" for maximum input power 28 dBm are valid for temperature up to 60 °C. Qualcomm RF360 Europe GmbH A Qualcomm – TDK Joint Venture

8 Transmission coefficients



RF360 Europe GmbH A Qualcomm – TDK Joint Venture


Qualcom

8.2 ANT – RX

Qualcomm RF360 Europe GmbH A Qualcomm – TDK Joint Venture

8.3 TX – RX

Please read **Cautions and warnings** and **Important notes** at the end of this document.

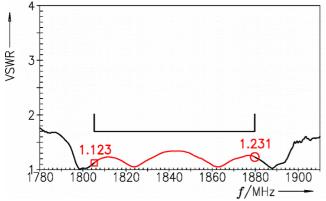
RF360 Europe GmbH A Qualcomm – TDK Joint Venture

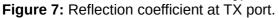
□ = 1805.2 O = 1879.8

□ = 1710.2 O = 1784.8 □ = 1805.2

O = 1879.8

□ = 1710.2 O = 1784.8


Z_{TX}=50 Ω


 $Z_{ANT}=50 \ \Omega$

Z_{RX}=50 Ω

9 **Reflection coefficients**

Qualcom

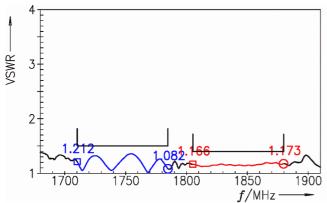


Figure 8: Reflection coefficient at ANT port.

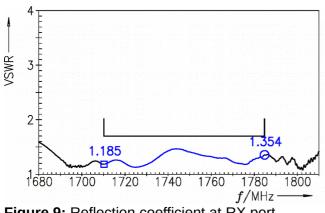


Figure 9: Reflection coefficient at RX port.

10 EVMs

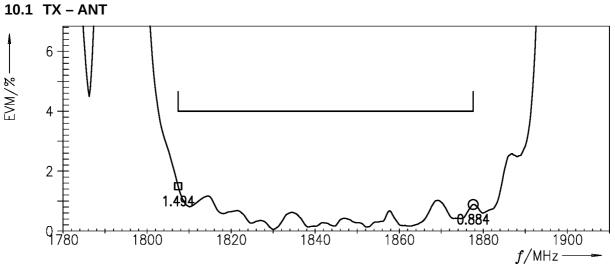


Figure 10: Error vector magnitude TX – ANT.

10.2 ANT – RX

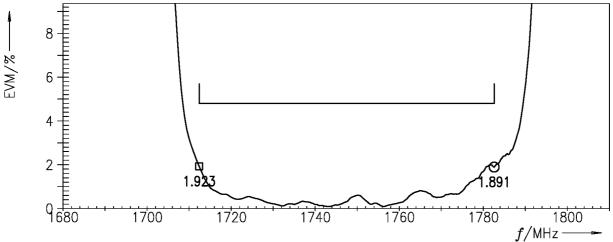
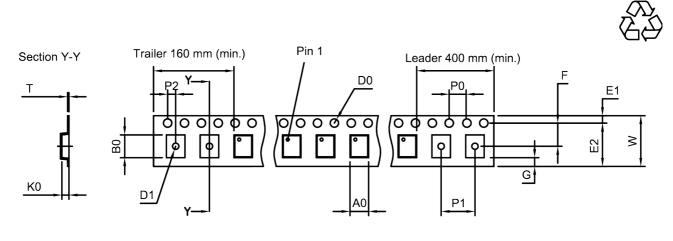



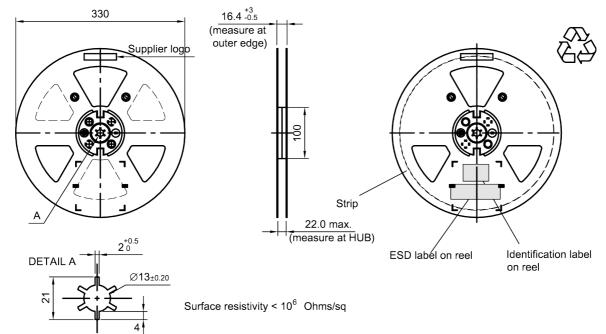
Figure 11: Error vector magnitude ANT – RX.

11 Packing material

11.1 Tape

User direction of unreeling

Figure 12: Drawing of tape (first-angle projection) with tape dimensions according to Table 1.


A ₀	8.4±0.05 mm
B ₀	8.4±0.05 mm
D ₀	1.5+0.1/-0 mm
D_1	1.5 mm (min.)
E1	1.75±0.1 mm

E2	14.25 mm (min.)
F	7.5±0.1 mm
G	0.75 mm (min.)
K ₀	1.3±0.1 mm
P ₀	4.0±0.1 mm

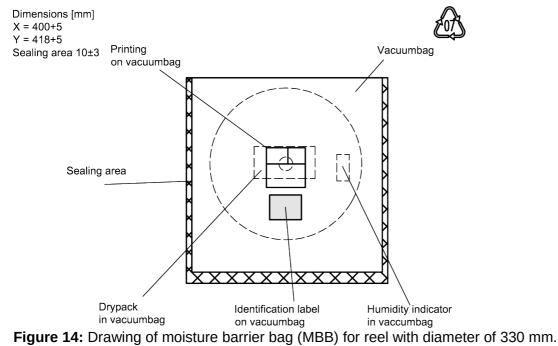

P_1	12.0±0.1 mm
P_2	2.0±0.1 mm
Т	0.3±0.05 mm
W	16.0+0.3/-0.1 mm

Table 1: Tape dimensions.

11.2 Reel with diameter of 330 mm

Figure 13: Drawing of reel (first-angle projection) with diameter of 330 mm.

Qualcomm RF360 Europe GmbH A Qualcomm – TDK Joint Venture

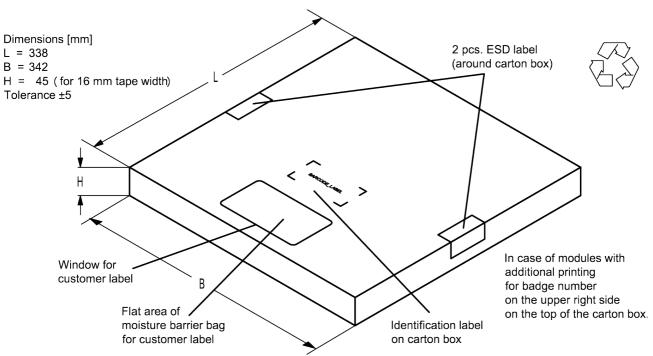


Figure 15: Drawing of folding box for reel with diameter of 330 mm.

12 Marking

Products are marked with tracking number (5 or 8 characters), type designator (5 characters), as well as production location and date code (4 characters). The marking corresponds to one of the following schemes:

XXXXX	5-character tracking number
XXXXX	5-character type designator
M5C6	1-character location code + 3-character date code (example)

 Table 2: Marking for 5-character tracking number (standard).

XXXXXXXX	8-character tracking number
XXXXX	5-character type designator
M5C6	1-character location code + 3-character date code (example)

Table 3: Marking for 8-character tracking number.

???	
XXXXXXXX	8-character tracking number
XXXXX	5-character type designator
M5C6	1-character location code + 3-character date code (example)

Table 4: Marking for 8-character tracking number with 4 lines.

- Tracking number: *t.b.d.*
- Type designator: The 5-character type designator of the ordering code is used for the marking.
 Example: B3xxxx<u>D1234</u>xxxx
- Production-location and date code: The production-location is encoded in the first character according to Table 5. The production date code is encoded in the last three characters according to Table 6.

Code:	M or no letter	J	С	Н
Location:	Munich	Singapore	Wuxi	SAE, Hong Kong

 Table 5: Production location code.

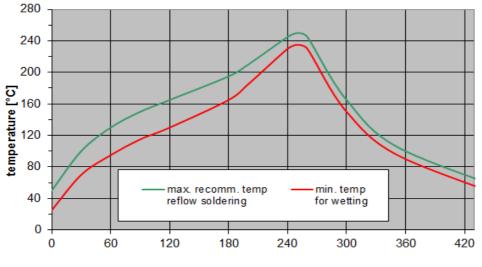
Qualcomm RF360 Europe GmbH A Qualcomm – TDK Joint Venture

	1 st digit (day)						2 nd digit (year)			3 rd digit (month)			
Day	Code	Day	Code	Day	Code	Year	Code	Year	Code	Month	Code	Month	Code
1	1	11	А	21	М	2010	А	2022	Р	Jan	1	Jul	7
2	2	12	В	22	N	2011	В	2023	R	Feb	2	Aug	8
3	3	13	С	23	Р	2012	С	2024	S	Mar	3	Sep	9
4	4	14	D	24	R	2013	D	2025	Т	Apr	4	Oct	0
5	5	15	E	25	S	2014	E	2026	U	Мау	5	Nov	N
6	6	16	F	26	Т	2015	F	2027	V	Jun	6	Dec	D
7	7	17	н	27	U	2016	Н	2028	W				
8	8	18	J	28	V	2017	J	2029	Х				
9	9	19	к	29	W	2018	К	2030	Z				
10	0	20	L	30	Х	2019	L	2031	А				
				31	Z	2020	М	2032	В				
						2021	Ν	and	so on				

 Table 6: Production date code.

Example of how to decode production location and date code:

Code: **M 5 C 6**


Location:	М	→ Mu	→ Munich		
Day:		5	\rightarrow	5 th	
Year:		С	\rightarrow	2012	
Month:		6	\rightarrow	June	

13 Soldering profile

The recommended soldering process is in accordance with IEC 60068-2-58 – 3^{rd} edit and IPC/JEDEC J-STD-020B.

ramp rate	≤ 3 K/s	
preheat	125 °C to 220 °C, 150 s to 210 s, 0.4 K/s to 1.0 K/s	
<i>T</i> > 220 °C	30 s to 70 s	
<i>T</i> > 230 °C	min. 10 s	
<i>T</i> > 245 °C	max. 20 s	
<i>T</i> ≥ 255 °C	-	
peak temperature T _{peak}	250 °C +0/-5 °C	
wetting temperature T_{min}	230 °C +5/-0 °C for 10 s ± 1 s	
cooling rate	≤ 3 K/s	
soldering temperature T	measured at solder pads	

 Table 7: Characteristics of recommended soldering profile for lead-free solder (Sn95.5Ag3.8Cu0.7).

time [s]

Figure 16: Recommended reflow profile for convection and infrared soldering – lead-free solder.

14 Annotations

14.1 Matching coils

See TDK inductor pdf-catalog <u>http://www.tdk.co.jp/tefe02/coil.htm#aname1</u> and Data Library for circuit simulation <u>http://www.tdk.co.jp/etvcl/index.htm</u>.

14.2 RoHS compatibility

ROHS-compatible means that products are compatible with the requirements according to Art. 4 (substance restrictions) of Directive 2011/65/EU of the European Parliament and of the Council of June 8th, 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment ("Directive") with due regard to the application of exemptions as per Annex III of the Directive in certain cases.

14.3 Scattering parameters (S-parameters)

The pin/port assignment is available in the headers of the S-parameter files. Please contact your local RF360 sales office.

14.4 Ordering codes and packing units

Ordering code	Packing unit
B39182D7906D310	3000 pcs

Table 8: Ordering codes and packing units.

15 Cautions and warnings

15.1 Display of ordering codes for RF360 products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of RF360, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under www.rf360jv.com/orderingcodes.

15.2 Material information

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

For information on recycling of tapes and reels please contact one of our sales offices.

15.3 Moldability

Before using in overmolding environment, please contact your local RF360 sales office.

15.4 Package information

Landing area

The printed circuit board (PCB) land pattern (landing area) shown is based on RF360 internal development and empirical data and illustrated for example purposes, only. As customers' SMD assembly processes may have a plenty of variants and influence factors which are not under control or knowledge of RF360, additional careful process development on customer side is necessary and strongly recommended in order to achieve best soldering results tailored to the particular customer needs.

Dimensions

Unless otherwise specified all dimensions are understood using unit millimeter (mm).

Projection method

Unless otherwise specified first-angle projection is applied.

16 Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, RF360 Europe GmbH and its affiliates are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an RF360 product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.rf360jv.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.

The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

单击下面可查看定价,库存,交付和生命周期等信息

>>Qualcomm-RF360