1A Single Chip Li-Ion and Li-Polymer Charger

General Description

The LP4073 is a complete constant-current/ constant voltage linear charger for single cell lithium-ion battery. No external sense resistor is needed, and no blocking diode is required due to the internal MOSFET architecture. Thermal feedback regulates the charge current to limit the die temperature during high power operation or high ambient temperature. The charge voltage is fixed at 4.2V/4.35V, and the charge current can be programmed externally by ISET pin with a single resistor.

LowPowerSemi 微源半導體

The LP4073 automatically terminates the charge cycle when the charge current drops to 1/10 setting current value after the final float voltage is reached.

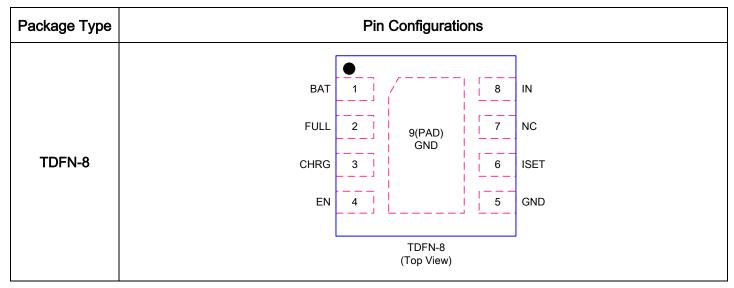
Other features include charge current monitor, under voltage lockout, automatic recharge, status pins and battery temperature detection.

Order Information

Features

- Input Voltage up to 28V
- Input Over Voltage Protection : 7V
- Short-circuit protection
- Programmable Charge Current up to 1A
- 1µA Battery Reverse Current
- Over temperature Sensing Protection
- Protection of Reverse Connection of Battery
- Constant-Current/Constant-Voltage Operation with Thermal Regulation
- TDFN-8 Package
- RoHS Compliant and 100% Lead (Pb)-Free

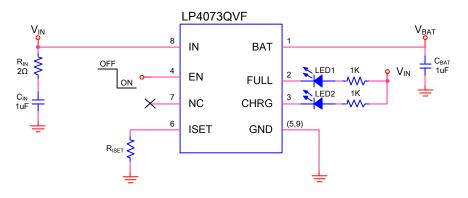
Applications


- ♦ Portable Media Players/Game
- ♦ Power Bank
- ♦ Bluetooth Applications
- ♦ PDA/MID

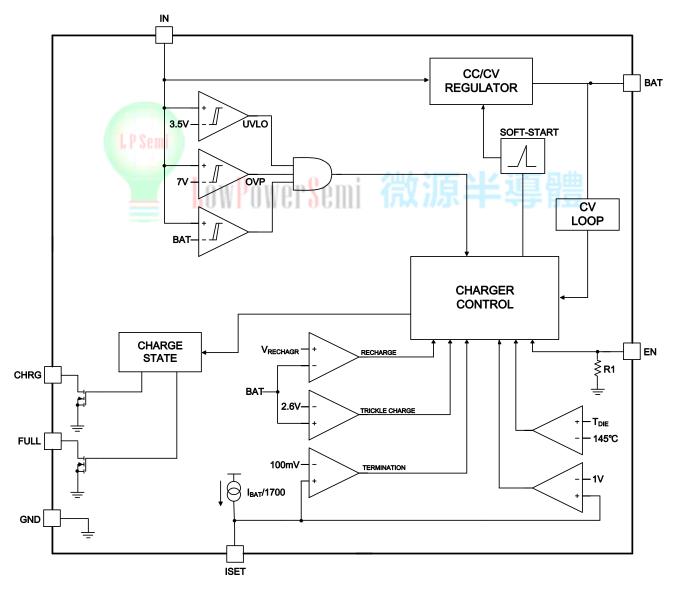
Marking Information

Device	Marking	Package	Shipping	
	LPS			
LP4073QVF	LP4073	TDFN-8	5K/REEL	
	YWX			
	LPS			
LP4073QVF-435	LP4073	TDFN-8	5K/REEL	
	435YWX			
Marking indication:				
Y:Production year W:Production week X:Series number				

Functional Pin Description



Pin Description


No.	NAME L P Semi	DESCRIPTION	
		BAT is the connection to the battery. Typically a $10\mu F$ Tantalum capacitor is needed for	
1	BAT	stability when there is no battery attached. When a battery is attached, only a 1uF ceramic capacitor is required.	
		Open-Drain Charge Status Output. When the battery is charging, the FULL pin could be	
2	FULL	pulled High by an external pull high resistor. When the charge cycle is completed, the	
		pin is pulled Low by an internal N-MOS.	
	CHRG	Open-Drain Charge Status Output. When the battery is charging, the CHRG pin is	
3		pulled low by an internal N-MOS. When the charge cycle is completed, the pin could be	
		pulled High by an external pull high resistor.	
4	EN	Charge Enable Input (active low).	
5,9	GND	GND is the connection to system ground.	
	ISET	Charge Current Program. The charge current is programmed by connecting a 1%	
6		resistor (RISET) to ground.	
		$I_{BAT} = \frac{1700 \times V_{ISET}}{R_{ISET}}$	
7	NC	No Connector.	
8	IN	IN is the input power source. Connect to a wall adapter.	

Typical Application Circuit

Functional Block Diagram

Absolute Maximum Ratings Note 1

\diamond	Input Voltage to GND0.3V to 28V	/
\diamond	BAT Voltage to GND 5V to 15	/
\diamond	Other pin to GND0.3V to 6.5V	/
\diamond	Maximum Junction Temperature (T _J) 150°C	2
∻	Maximum Soldering Temperature (at leads, 10 sec) 260°C	2
∻	Operating Junction Temperature Range20°C to 85°C	2
∻	Storage Temperature65°C to 165°C	2

Thermal Information

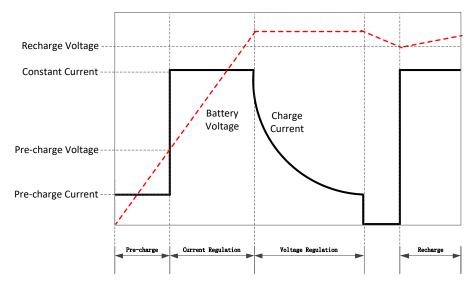
\diamond	Maximum Power Dissipation (P _D ,T _A =25°C) 1	1.5W
\diamond	Thermal Resistance (θ _{JA}) 65 [°]	°C/W

ESD Susceptibility

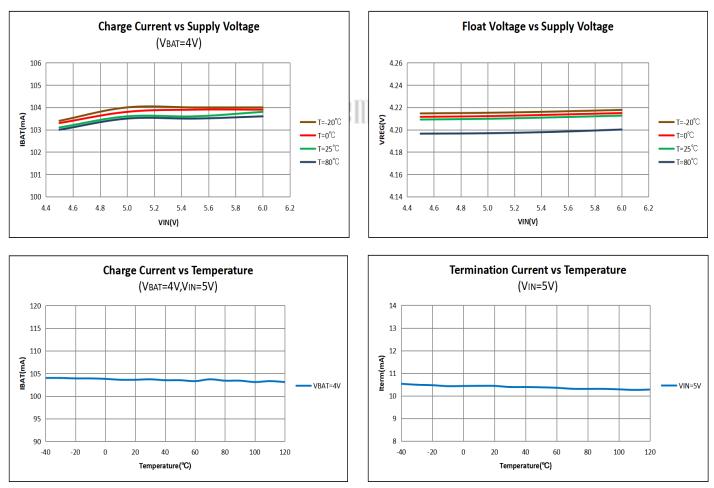
\diamond	HBM(Human Body Model)	2KV
\diamond	MM(Machine Model)	200V

Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

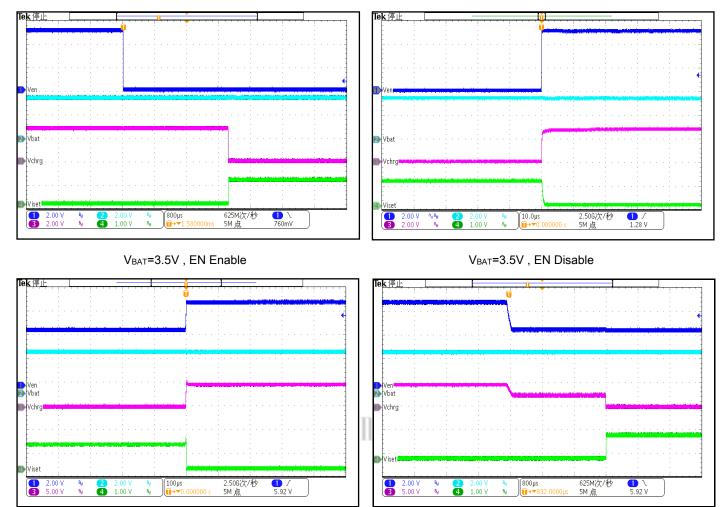

(T_A=25°C, V_{IN} =5V, unless otherwise noted.)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
Vin	Input Voltage		4.5	5	6.5	V
		R _{ISET} =17K,Charge Mode		300		uA
lin	Input Supply Current	VBAT=VFLOAT, Charge Terminated		160		uA
		RISET=NC,Shutdown Mode		200		uA
	De sud et el Os de sud (El e el) \/elle su	LP4073QVF	4.158	4.2	4.242	V
Vfloat	Regulated Output (Float) Voltage	LP4073QVF-435	4.29	4.35	4.37	V
Vuv	VIN Under Voltage Lockout Threshold	V _{IN} Rising		3.5		V
VUV_HYS	Under Voltage Lockout Hysteresis			110		mV
V _{OVP}	Input Voltage OVP	V _{IN} Rising		7		V
Vovp_hys	OVP Hysteresis			150		mV
		RISET=3.4k, Current Mode		500		mA
I _{BAT}	BAT Pin Current	R _{ISET} =17k, Current Mode		100		mA
	L P Semi	$V_{BAT}=VFLOAT$ ($V_{IN}=float \text{ or } 0V$)		1		uA
I _{TRIKL}	Trickle Charge Current	V _{BAT} <v<sub>TRIKL, R_{ISET}=10k, Charge Mode</v<sub>		10		%I _{ВАТ}
VTRIKL	Trickle Charge Thres <mark>h</mark> old Vol <mark>ta</mark> ge		直情	2.6		V
V _{TRIKL-HYS}	Trickle Charge Hysteresis Voltage			150		mV
ITERM	Termination Current Threshold			10		%Іват
VISET	ISET Pin Voltage	RISET=10k, Current Mode		1		V
ISTAT	CHRG/FULL Pin Sink Current	V _{CHRG} =5V			1	uA
Vstat	CHRG/FULL Pin Output Low Voltage	I _{CHRG} =5mA			0.5	V
ΔV_{RECHRG}	Recharge Battery Threshold Voltage	V _{FLOAT} -V _{RECHRG}		150		mV
VASD	VIN - VBAT Lockout Threshold Voltage	VBAT=3.5V,VIN Rising		150		mV
V _{EN_ON}	EN Logic-Low Voltage Threshold				0.4	V
V_{EN_OFF}	EN Logic-High Voltage Threshold		1.4			V
t TERM	Charge termination Filtering Time			1		ms
TLIM	Junction Temperature in C	onstant Temperature Mode		145	1	°C


LP4073

Typical Charging Profile

Typical Performance Characteristics



LP4073

Application Performance Curves

(CIN=COUT=10uF , RISET=16.5K, unless otherwise noted)

V_{BAT}=3.5V , V_{IN}=5V->7V

 $V_{\text{BAT}}\text{=}3.5\text{V}$, $V_{\text{IN}}\text{=}7\text{V}\text{-}\text{>}5\text{V}$

Application Information

P Sem

The LP4073 has built-in input voltage surge protection as high as +28V. The charger IC will be automatically disabled when the input voltage is higher than 7V. A charge cycle begins when EN is low, the voltage at the IN pin rises above the UVLO threshold level and a program resistor is connected from the ISET pin to ground. If the BAT pin is less than VTRIKL ,the charger enters trickle charge mode. In this mode, the LP4073 supplies approximately 1/10 the ISET programmed charge current to bring the battery voltage up to a safe level for full current charging. When the BAT pin voltage rises above 2.6V, the charger enters constant-current mode(CC), where the ISET programmed charge current is supplied to the battery. When the Battery Voltage approaches the final float voltage, It enters constant-voltage mode(CV) and the charge current begins to decrease, and the battery full indication is set when the charge current in the CV mode is reduced to the programmed full battery current.

LowPowerSemi 微源半導體

Charge Termination

A charge cycle is terminated when the charge current falls to 1/10th the ISET programmed value after the final float voltage is reached. This condition is detected by using an internal, filtered comparator to monitor the ISET pin. When the ISET pin voltage falls below 100mV for longer than t_{TERM} (typically 1ms), charging is terminated.

Charge Current Program

The charge current (I_{BAT}) is set by a resistor (R_{ISET}) connecting from the ISET pin to GND. The relationship of the charge current and the programming resistance is established by the following equations ($V_{ISET}=1V$).

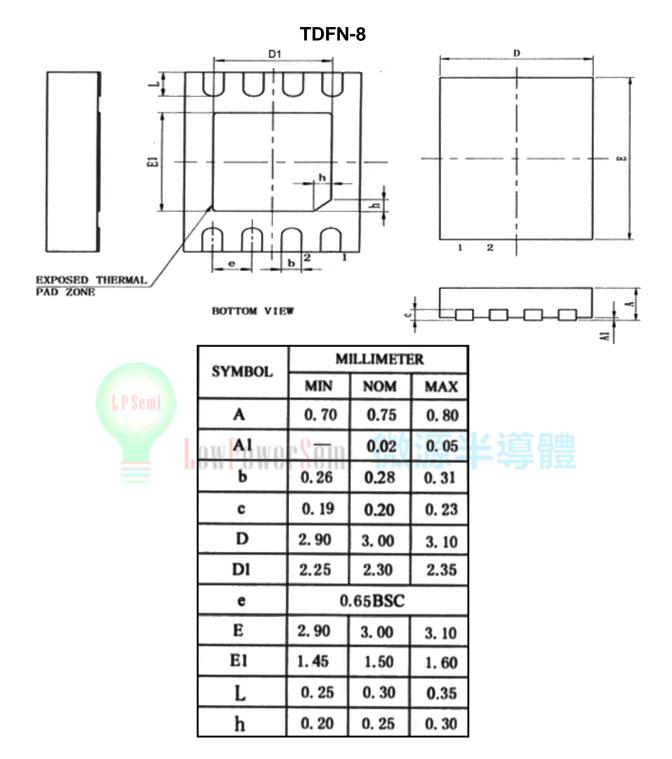
$$I_{BAT} = \frac{1700 \times V_{ISET}}{R_{ISET}}$$

Automatic Recharge

Once the charge cycle is terminated, the LP4073 continuously monitors the voltage on the BAT pin. A charge cycle restarts when the battery voltage falls below $V_{RECHARG}$ (which corresponds to approximately 80% to 90% battery capacity). This ensures that the battery is kept at or near a fully charged condition and eliminates the need for periodic charge cycle initiations.

Charge Status Indicator (CHRG/FULL)

After application of a 5V source, the input voltage rises above the UVLO and sleep thresholds (V_{IN} > V_{BAT} + V_{ASD}), but is less than OVP (V_{IN} < V_{OVP}), CHRG has two different states: strong pull-down (~5mA) and high impedance. The strong pull-down state indicates that the LP4073 is in a charge cycle. When the charger is entered CV mode and once the charge current has reduced to the battery full charge current threshold (I_{TERM}), the CHRG pin will become high impedance.


	Function	CHRG	FULL
	Charging	Low	Hi-Z
	Charge Finish	Hi-Z	Low

Thermal Limit

An internal thermal feedback loop reduces charge current if junction temperature attempts to rise above a preset value of approximately 145°C. This feature protects the device from excessive temperature and allows the user to push the limits of the power handling capability of a given circuit board without risk of damaging the device. The charge current can be set according to typical (not worst-case) ambient temperature with the assurance that the charger will automatically reduce the current in worst-case conditions.

Packaging Information

单击下面可查看定价,库存,交付和生命周期等信息

>>LOW POWER(微源半导体)