

MPQ2022

Automotive Dual Phantom Antenna LDO with I²C and ADC for Digital Diagnosis 40V, Dual 300mA, AEC-Q100 Qualified

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

DESCRIPTION

The MPQ2022 is a dual-channel low-dropout (LDO) regulator with I²C interface and one-time programmable (OTP) memory. The device provides phantom power to low-noise amplifiers (LNAs) for active antennas in automotive systems from a cold-crank through load-dump (4.5V to 40V) input voltage conditions.

It delivers up to 300mA per channel with excellent load and line regulation. Low 32µA quiescent current makes the devices suitable for always-on power supplies.

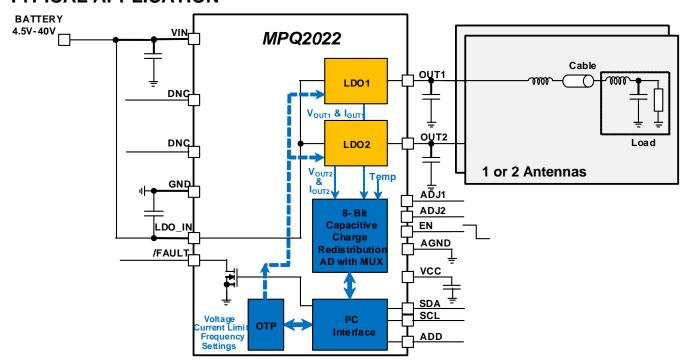
The MPQ2022 dual LDO outputs are programmable through I²C interface. The output voltage level is adjustable from 1V to 13.6V. The various parameters can be adapted by writing the settings in the device.

During bench evaluations, different configurations can be easily obtained through the I²C interface instead of reworking external components. Once the desired optimum setting has been reached, a multipage OTP is available allowing the settings to be permanently stored.

FEATURES

- Wide Input Voltage Range (4.5V to 40V)
- 32µA Low Quiescent Current
- Soft-Start Feature for All Regulator Outputs
- No External Resistor Network for Output Voltage Settings
- Programmable Dual LDOs
 - 300mA Continuous Output Current Per Channel
 - 1V to 13.6V Output Range
 - Over Temperature Protection
- I²C interface
- ADC for LDO Output Voltages and Load Currents
- Multi-Page One-Time Programmable (OTP) Memory
- Available in QFN-16 (4mmx4mm) Package
- Available with Wettable Flank Package
- Available in AEC-Q100 Grade 1

APPLICATIONS


- Antenna Phantom Power
- Automotive Camera
- ADAS Systems with Functional Safety and ASIL Requirements

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

TYPICAL APPLICATION

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

ORDERING INFORMATION

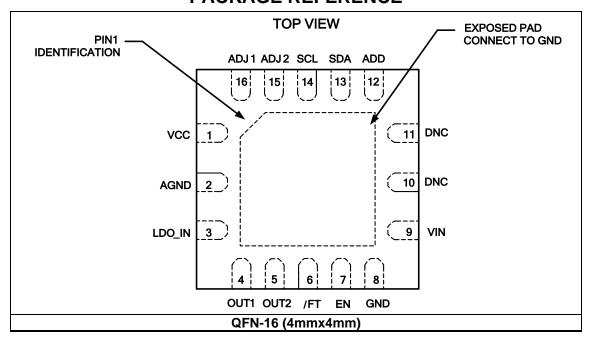
Part Number*	Package	Top Marking	MSL Rating***	
MPQ2022GRE-xxxx-AEC1**, ****	QFN-16 (4mmx4mm)	See Below	1	

^{*} For Tape & Reel, add suffix -Z (e.g.: MPQ2022GRE-xxxx-AEC1-Z)

*** Moisture Sensitivity Level Rating

TOP MARKING

MPSYWW


MP2022

LLLLLL

Б

MPS: MPS prefix Y: Year code WW: Week code MP2022: Part number LLLLL: Lot number E: Wettable Flank

PACKAGE REFERENCE

^{** &}quot;xxxx" is the configuration code identifier for the register settings stored in the OTP register. Each "x" can be a hexadecimal value between 0 and F. Please contact an MPS FAE to create this unique number.

^{****} In development, contact MPS for details

MPQ2022 - DUAL PHANTOM ANTENNA LDO WITH I²C AND ADC FOR DIGITAL DIAGNOSIS

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

PIN FUNCTIONS

PIN#	Name	Description
FIN#	ivallie	•
1	VCC	Bias Supply. This is 5V internal regulator output, supplies power to the I ² C interface, internal control circuit and gate drivers. External low-ESR decoupling capacitor to ground is required close to this pin. A 1μF to 10μF ceramic capacitor is recommended.
2	AGND	Analog Ground. Ground for internal logic and signal control blocks.
3	LDO_IN	Supply Input of the Dual LDOs. Tie to VIN pin and place a 1μF to 10μF ceramic between this pin and ground.
4	OUT1	Output of LDO1. Only a low-value ceramic capacitor is required as output capacitor for stability. A 10µF ceramic capacitor is recommended for most applications.
5	OUT2	Output of LDO2. Only a low-value ceramic capacitor is required as output capacitor for stability. A 10µF ceramic capacitor is recommended for most applications.
6	/FT	Fault Pin Output. This pin is an open-drain status pin. Connect with a resistor (e.g. 100kΩ) to a voltage source ≤5V. Leave this pin floating if not used.
7	EN	Enable. Pulling this pin below the falling threshold 2.3V shuts the chip down. Pulling it above the rising threshold 2.5V enables the chip. There is an internal 3.3M pull-down resistor, leaving EN pin floating disables the chip.
8	GND	Power Ground. Reference ground of the regulated output voltage. Connect these pins to larger copper areas for best thermal result.
9	VIN	Input Supply. VIN supplies power to all of the internal control circuitries. Tie to LDO_IN pin and a decoupling capacitor to ground must be placed as close to this pin as possible.
10	DNC	Do Not Connect. Reserved for factory functions, it is recommended to leave floating.
11	DNC	Do Not Connect. Reserved for factory functions, it is recommended to leave floating.
12	ADD	Address setting for I²C. Connect a resistor between this pin and ground to set I ² C address. Leave this pin floating if not used.
13	SDA	I ² C Serial Data. This pin is an open-drain port. An external pull-up resistor is needed to connect this pin to the supply rail of the I ² C bus. If SDA is not used, it is recommend to connect SCL to the VCC pin through a resistor.
14	SCL	I²C Serial Clock. This pin is an open-drain port. An external pull-up resistor is needed to connect this pin to the supply rail of the I ² C bus. If SCL is not used, it is recommend to connect SCL to the VCC pin through a resistor.
15	ADJ2	The reference voltage input for LDO2. In tracking mode of LDO output voltage, connect this pin to the voltage reference directly or with a voltage divider for lower output voltages. Leave this pin floating if not used.
16	ADJ1	The reference voltage input for LDO1. In tracking mode of LDO output voltage, connect this pin to the voltage reference directly or with a voltage divider for lower output voltages. Leave this pin floating if not used.
		Exposed Thermal Power Pad. Connect the exposed pad to the ground plane for optimal heat dissipation. Do not use EP as the primary electrical ground connection.

MPQ2022 - DUAL PHANTOM ANTENNA LDO WITH I2C AND ADC FOR DIGITAL DIAGNOSIS

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

ABSOLUTE MAXIMUM RATINGS (1) VIN, DNC, DNC, LDO_IN, OUT1, OUT2
Continuous Power Dissipation ($T_A = +25^{\circ}C$) (2) QFN-16 (4mmX4mm)
ESD Capability HBM (Human Body Mode)±2000V CDM (Charged Device Mode)±750V
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$

Thermal Resistance	$oldsymbol{ heta}_{JA}$	$oldsymbol{ heta}_{JC}$
QFN-16 (4mmx4mm)		
JESD51-7 ⁽³⁾	46	10 °C/W
T-MPQ2022-R-00A (4)	31	. 5.5 °C/W

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J (MAX), the junction-to-ambient thermal resistance θ_{JA} , and the ambient temperature T_A . The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J (MAX)- T_A)/ θ_{JA} . Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- 3) Measured on JESD51-7, 4-layer PCB. The value of θ_{JA} given in this table is only valid for comparison with other packages and cannot be used for design purposes. These values were calculated in accordance with JESD51-7, and simulated on a specified JEDEC board. They do not represent the performance obtained in an actual application.
- Measured on T-MPQ2022-R-00A, 4-layer PCB, 2oz, 9cmx9cm.

MPQ2022 - DUAL PHANTOM ANTENNA LDO WITH I2C AND ADC FOR DIGITAL DIAGNOSIS

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

ELECTRICAL CHARACTERISTICS

Typical values are at V_{IN} = 13.5V, V_{EN} = 3V, T_J = 25°C, all voltages with respect to ground, unless otherwise noted. Minimum and maximum values are at V_{IN} = 13.5V, V_{EN} = 2V, T_J = -40°C to +150°C, all voltages with respect to ground, guaranteed by characterization, unless otherwise noted.

Parameters	Symbol	Condition	Min	Тур	Max	Units
Input Voltage-Current Paramete	ers					
Input Voltage	V _{IN}		4.5		40	V
Supply Current (Quiescent)	lα	Enabled, V _{OUT1} =V _{OUT2} = 9V No load, T _J = +25°C		32		μA
Supply Current (Quiescent)	ΙQ	Enabled, V _{OUT1} =V _{OUT2} = 9V No load, T _J =-40°C to +150°C			85	μΑ
Supply Current (Shutdown)	I _{SD}	V _{EN} = 0V			5	μΑ
V _{IN} Under Voltage Lockout Threshold Rising	UVLO _{Vth-R}			4.2		V
V _{IN} Under Voltage Lockout Threshold Falling	UVLO _{Vth-F}			3.8		V
Thermal Shutdown and Over Te	emperature	Protection				
Thermal Shutdown (5)	T _{SD}	Junction Temperature Rising		170		°C
Thermal Shutdown Hysteresis (5)	T _{SD-HYS}			20		°C
/FT						
/FT Sink Current Capacity	V _{PG-SINK}	Sink 4mA			300	mV
/FT Delay Time	4	Rising Edge		90		μs
/FI Delay Time	tpg-delay	Falling Edge		40		μs
/FT Leakage Current	I _{PG-LKG}			10	100	nA
Enable						
Enable Threshold	EN∨th	Level Sensitive Input	2	2.5	3	V
Enable Threshold Hysteresis	V _{EN-HYS}			200		mV
Enable Input Current	I _{EN}	V _{EN} =2V		0.5	1	μΑ
Internal VCC						
VCC Regulator	Vcc	I _{CC} =0mA	4.8	5	5.2	V
Fault Detection						
Power On Short-to-battery Detection Window	t _{BLK-RC}			16		ms
Short to Battery Threshold	V _{StB}	V _{OUT} –V _{IN} , check during turnon sequence	-500	-80	-10	mV

MPQ2022 - DUAL PHANTOM ANTENNA LDO WITH I2C AND ADC FOR DIGITAL DIAGNOSIS

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

ELECTRICAL CHARACTERISTICS (continued)

Typical values are at $V_{IN}=13.5V$, $V_{EN}=3V$, $T_J=25^{\circ}C$, all voltages with respect to ground, unless otherwise noted. Minimum and maximum values are at $V_{IN}=13.5V$, $V_{EN}=2V$, $T_J=-40^{\circ}C$ to $+150^{\circ}C$, all voltages with respect to ground, guaranteed by characterization, unless otherwise noted.

Parameters Symbol		Condition	Min	Тур	Max	Units				
Dual Linear Regulator (LDO1 & LDO2)										
Regulated Output Range	V _{OUT1,2}	Programmable Range	1		13.6	V				
Regulated Output Range	V OU 11,2	Default Setting		9		V				
Line Regulation	dV _{Aline}	V _{IN} = 3V to 40V, 5mA Load Current, V _{OUT} =8.5V,	-10	1	10	mV				
Load Regulation	dV_{Aload}	I_{LOAD} = 5mA to 300mA, V_{OUT} =8.5V, T_{J} = +25°C		1	20	mV				
Power Supply Rejection Ratio (5)	PSRR	I _{LOAD} = 100mA at 100Hz, V _{OUT} =8.5V		60		dB				
Dropout Voltage	Vdropout	I _{LOAD} = 100mA, Measured between LDO_IN and OUTx		250	300	mV				
Over current Limit	1	Programmable Range	100		500	mA				
Over current Limit	ILDO-LIMIT	Default Value		400		mA				

Note:

⁵⁾ Not tested in production and guaranteed by design and characterization.

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

I²C PORT SIGNAL CHARACTERISTICS

Typical values are at V_{IN} = 13.5V, V_{EN} = 3V, T_J = 25°C, all voltages with respect to ground, unless otherwise noted. Minimum and maximum values are at $V_{IN} = 13.5V$, $V_{EN} = 2V$, $T_{J} = -40$ °C to +150°C, all voltages with respect to ground, guaranteed by characterization, unless otherwise noted.

Parameters	Symbol	Condition	Min	Тур	Max	Units			
I ² C Interface Specifications									
Input Logic Low	VIL		0		0.4	V			
Input Logic High	V _{IH}		1.3			V			
Output Logic Low	Vol	I _{LOAD} =3mA			0.4	V			
SCL Clock Frequency	f _{SCL}				400	kHz			
SCL High Time	t _{HIGH}		0.6			μs			
SCL Low Time	tLOW		1.3			μs			
Data Setup Time	t su,dat		100			ns			
Data Hold Time	thd,dat		0		0.9	μs			
Setup Time for Repeated Start	t _{SU,STA}		0.6			μs			
Hold Time for Start	thd,sta		0.6			μs			
Bus Free Time between a Start and a Stop Condition	t _{BUF}		1.3			μs			
Setup Time for Stop Condition	t su,sto		0.6			μs			
Rise Time of SCL and SDA	t _R		20+0.1×C _B		120	ns			
Fall Time of SCL and SDA	t _F		20+0.1 xC _B		120	ns			
Pulse Width of Suppressed Spike	tsp		0		50	ns			
Capacitance Bus for Each Bus Line	Св				400	pF			

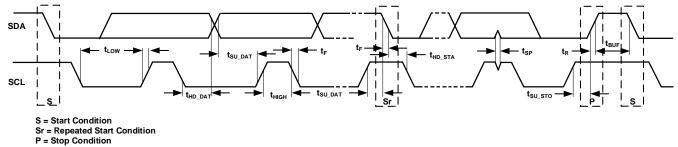


Figure 1: I²C Compatible Interface Timing Diagram

MPQ2022 - DUAL PHANTOM ANTENNA LDO WITH I²C AND ADC FOR DIGITAL DIAGNOSIS

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

TYPICAL PERFORMANCE CHARACTERISTICS

TBD

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

BLOCK DIAGRAM

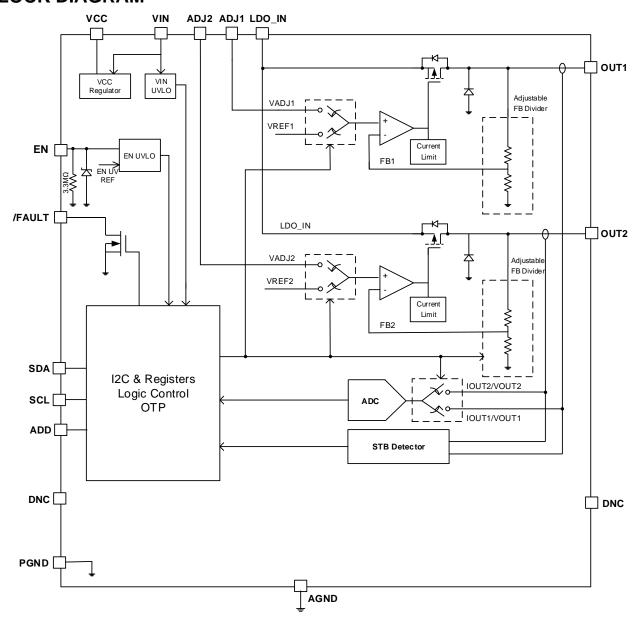


Figure 2: Functional Block Diagram

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

OPERATION

The MPQ2022 is a dual phantom antenna linear regulator with I²C interface. It supplies power to systems with high-voltage batteries. It features a wide 4.5V to 40V input range, low-dropout voltage, and a low-quiescent supply current.

Its two output-adjustable LDOs are supplied from LDO_IN and have outputs that are adjustable via I²C interface from 1V to 13.6V with 200mV step or from 1V to 7.3V with 100mV step.

The regulator output current is limited internally, and the device is protected against short-circuit, over-load, and over-temperature conditions.

The dual LDO peak output current limitation range can be configured from 100mA to 500mA via I²C interface.

When the junction temperature is too high, the thermal sensor sends a signal to the control logic that shuts down the IC. The IC will re-start when the temperature has sufficiently cooled.

The maximum power-output current is a function of the package's maximum power dissipation for a given temperature. The maximum power dissipation is dependent on the thermal resistance of the case and the circuit board, the temperature difference between the die junction and the ambient air, and the rate of airflow. GND and the exposed pad must be connected to the ground plane for proper dissipation.

Fault Indicator and Diagnostics

The device provides full diagnostics of different fault conditions. MPQ2022 monitors the load current through an internal sense resistor to protect against over current and short-circuit. In addition, the device also detects output over voltage and under voltage conditions, short-to-battery and features thermal shutdown.

/FT pin will be pulled high at normal operation, and any fault or warning will pull down this pin to indicate a fault status, referring to Table1. The /FT pin is an open drain of a MOSFET. It should be connected to a \leq 5V voltage source through a resistor (e.g. $100k\Omega$).

Besides, MPQ2022 has dedicated register bits serve as fault flag and device status indication for system diagnostics. Refer the Register Map and Register Description sections for details.

Short-Circuit and Over current

The current limit of each LDO channel is programmed via I²C interface to protect the device during short-circuit or over current conditions. When the output current of either LDO reaches its internal threshold, the output current of the LDO is limited, and a dedicated bit in the register is set to indicate the fault. The /FT pin is asserted low as well, but the output is not disabled.

The /FT and the status of internal register diagnostic bits should be monitored by the external microcontroller (MCU), and the channel experiencing short-circuit or over current condition should be disabled by MCU through I²C interface by setting dedicated register bits. If severe condition occurs, MCU can shut down entire unit by pulling EN pin low.

If this condition persists, thermal shutdown could occur and both outputs will be disabled.

Short-to-Battery (STB) Detection

Shorting the LDO output pins to the battery because of a fault in the system is possible. MPQ2022 each LDO channel can detect this failure by comparing the corresponding voltage at the OUT1/2 and VIN pins before the device internal switches turn on.

A 16ms blank time is asserted each time the device is enabled when both VIN and EN exceed their rising threshold or recover from the thermal shutdown or hiccup. The short-to-battery detection occurs during this 16ms blank time. If the device detects the short-to-battery fault, both dual LDO switches are latched off or hiccup (based on Reg0x04 D[0] bit set), the /FT pin is asserted low, and the dedicated bits in the register are set to indicate fault-channel. After the short-to-battery fault is removed, the device can recover to normal operation automatically if hiccup mode selected or by recycling VIN power or EN to reset VCC if latched off mode is selected.

Thermal Shutdown

Thermal shutdown circuitry protects the device from overheating. The switch turns off immediately when the junction temperature exceeds +170°C (typ). The switch turns on again

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

after the device temperature drops by approximately 20°C (typ).

Integrated Inductive Clamp

During output turnoff, the cable inductance continues to source the current from the output of the device. The device integrates an inductive clamp to help dissipate the inductive energy stored in the cable. An internal diode is connected between OUT1/2 and GND pins with a DC-current capability of 300mA for inductive clamp protection.

VCC Regulator

In normal operation, an internal low-dropout (LDO) regulator outputs a nominal 5V VCC supply from VIN. This supplies power to all control blocks and I 2 C block. Add a 1 μ F to 10 μ F, low-ESR ceramic capacitor to act as the bypass capacitor from VCC to GND.

VCC has an internal under voltage lockout (UVLO) block. Chip is shutdown when VCC drops below its falling threshold 2.4V, and startup again when VCC exceeds its rising threshold 2.6V.

Input Under Voltage Lockout

The device VIN has an under voltage lockout (UVLO) threshold that is internally fixed. The under voltage lockout activates when the input voltage on the VIN pin drops below falling threshold 3.8V. UVLO ensures the regulator is not latched into an unknown state during low input-supply voltage. If the input voltage has a negative transient that drops below the UVLO threshold and then recovers, the regulator shuts down and powers up with a normal power-up sequence when the input voltage is above the UVLO rising threshold 4.2V.

Enable

EN pin can be used to enable and disable entire device. Pull EN below the falling threshold 2.3V shuts the chip down. Drive it to exceed the rising threshold 2.5V enables the chip.

Besides, there are dedicated register bits adopted to realize software enable of LDO1 and LDO2 separately.

The physical EN pin has a higher priority than software enable.

Adjustable LDO Output Voltage

MPQ2022 dual LDOs output voltage are adjustable from 1V to 13.6V via I²C interface. Besides, the dual LDO output voltage are also can be adjustable by tracking external voltage on ADJ1/2 pin.

This external voltage tracking mode is enabled via I²C interface. After enabled, the dual LDO output voltage V_{OUT1}, V_{OUT2} equals to the voltage at ADJ1, ADJ2 pin separately. The applied voltage ranges on ADJ1, ADJ2 are 3V to 13V. To track higher voltage, a resistor divider can be used to scale down voltage level.

Note that if external voltage tracking mode enabled, /FT pin indication and LDO output OV/UV/PG indication in I²C registers are invalid. The /FT remains at high.

LDO Output Voltage and Current Monitor

MPQ2022 has dedicated ADC block to monitor the dual LDO output voltage and load current The ADC can be enabled via I²C, and read Reg05 to Reg08 to monitor LDO1/2 output voltage and load current.

Multipage One-Time Programmable Memory

The MPQ2022 features 2 pages of one-time programmable memory to store desired settings permanently.

Differential one-time programmable cell instead of single ended is used for long-term reliability. Data is stored on two floating gate avalanche injection metal oxide semiconductor (FAMOS), and an output comparators are used for differential reading.

The first page of the multipage one-time programmable memory has been programmed with manufacture default values.

Once the device is enabled, the default values on the first page are used to set the control parameters in the registers. If there is data on other pages of the one-time programmable memory, the newest setting is identified by an internal indicator to write registers. Refer the Register Map and Register Description sections for details.

MPQ2022 - DUAL PHANTOM ANTENNA LDO WITH I²C AND ADC FOR DIGITAL DIAGNOSIS

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

Table 1: Fault Indicator

Fault	Registers Fault Flag	/FT Indication	Fault Actions
Thermal	Υ	Υ	Hiccup or latch off
Short to battery	Υ	Υ	Hiccup or latch off
LDO_OC	Υ	Υ	No action
LDO_OV	Υ	Υ	No action
LDO_UV	Y	Υ	No action

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

I²C INTERFACE

I²C Serial Interface Description

I²C is a 2-wire, bidirectional serial interface, consisting of a data line (SDA) and a clock line (SCL). The lines are externally pulled to a bus voltage when they are "idle". Connecting to the line, a master device generates the SCL signal and device address, and arranges the communication sequence. MPQ2022 interface is an I²C slave which will support the Fast Mode (400kHz), adding flexibility to the power supply solution. The output voltage, transition slew rate or other interesting parameters can be instantaneously controlled by I²C interface.

Data Validity

One clock pulse is generated for each data bit transferred. The data on the SDA line must be stable during the high period of the clock. The high or low state of the data line can only change when the clock signal on the SCL line is low (see Figure 3).

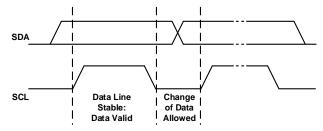


Figure 3: Bit Transfer on the I²C Bus

Start and Stop Conditions

The Start and Stop conditions are signaled by the master device, which signifies the beginning and the end of the I²C transfer. The Start condition is defined as the SDA signal transitioning from high to low while the SCL is high. The Stop condition is defined as the SDA signal transitioning from low to high while the SCL is high as shown in Figure 4.

Figure 4: Start and Stop Conditions

Start and Stop conditions are generated always by the master. The bus is considered busy after the Start condition. The bus is considered free again after a minimum of 4.7µs after the Stop condition. The bus stays busy if a repeated Start (Sr) is generated instead of a Stop condition. The Start (S) and repeated Start (Sr) conditions are functionally identical.

Transfer Data

Every byte put on the SDA line must be 8-bits long. Each byte must be followed by an acknowledge bit. The acknowledge-related clock pulse is generated by the master. The transmitter releases the SDA line (high) during the acknowledge clock pulse. The receiver must pull down the SDA line during the acknowledge clock pulse, so that it remains stable low during the high period of the clock pulse.

Data transfers follow the format shown in Figure 5. After the Start condition (S), a slave address is sent. This address is 7-bits long followed by an eighth bit, which is a data direction bit (R/W). A '0' indicates a transmission (write), and a '1' indicates a request for data (read). A data transfer is terminated always by a Stop condition (P) generated by the master. However, if a master still wishes to communicate on the bus, it can generate a repeated Start condition (Sr) and address another slave without first generating a stop condition.

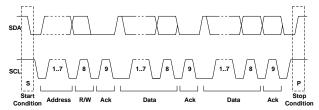


Figure 5: A Complete Data Transfer

Packet Error Checking (PEC)

The Packet Error Checking mechanism is employed to improve the communication reliability and robustness. Packet Error Checking, whenever applicable, is implemented by appending a Packet Error Code (PEC) at the end of each message transfer.

The PEC is a CRC-8 error-checking byte, calculated on all the message bytes (including addresses and read/write bits). The PEC is appended to the message by the device that supplied the last data byte.

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

If PEC error occurs, I2C communication fails and is locked. Write 1 to register 0x09, bit7 to clear PEC error flag and recover I²C communication.

Write Sequence

The typical MPQ2022 write sequence requires a master's START condition, a valid slave address, a register index byte, a corresponding data byte, and ends with a PEC for a single data update.

After receipt of each byte, the MPQ2022 acknowledges by pulling the SDA line LOW during the HIGH period of a single clock pulse. A valid I2C address selects the MPQ2022. The MPQ2022 performs an update on the falling edge of the LSB byte.

Read Sequence

The typical MPQ2022 read sequence requires the five-byte long: Start with a master's START condition, then a valid slave address and followed by a register index byte. Different from the write sequence, a master's START condition comes again. And the bus direction then turns around with the re-broadcast of the slave address with bit "1" indicating a read cycle. The following fourth byte contains the data being returned by the MPQ2022. That byte value in the data byte reflects the value of the register index being gueried before. Finally, the MPQ2022 sends PEC byte to end the Read Sequence.

I²C Update Sequence

The MPQ2022 requires a start condition, a valid I2C address, a register address byte, and a data byte for a single data update. After receipt of each byte, the MPQ2022 acknowledges by pulling the SDA line low during the high period of a single clock pulse. A valid I2C address selects the MPQ2022. The MPQ2022 performs an update on the falling edge of the LSB byte.

I²C Chip Address

The ADD pin can be used to program the I2C address through configuring the resistor value that connected between the ADD pin and ground. A 7.5µA current flows from ADD pin and generates a voltage on the ADD resistor. The MPQ2022 supports 7 addresses for up to 7 voltage rails by detecting the different voltage on ADD pin. Table 2 shows the resistor values for different I2C addresses.

When the master sends the address as an 8-bit value, the 7-bit address should be followed by "0/1" to indicate write/read operation.

Table 2: I²C Address

Address	Resistor (kΩ,1%)	Voltage Window
21h	0	<200mV
22h	40.2	200mV - 400mV
23h	68	400mV – 600mV
24h	93.1	600mV - 800mV
25h	120	800mV – 1000mV
26h	147	1000mV – 1200mV
27h	>173 or floating	> 1200mV

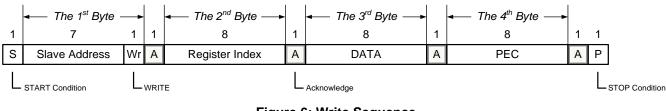


Figure 6: Write Sequence

Figure 7: Read Sequence

MPQ2022 - DUAL PHANTOM ANTENNA LDO WITH I²C AND ADC FOR DIGITAL DIAGNOSIS

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

DETAILED REGISTER BIT MAPPING

REGISTER SHORT NAME	R/W	ADD	D7	D6	D5	D4	D3	D2	D1	D0			
DEVICE S	STATU	JS AND	DIAGNOST	'IC									
DEV_REV	R	0x00		SILLICON_INFO									
DEV_STAT	R	0x01	RSV	LDO_1 _ACTIVE	LDO_2 _ACTIVE	VOUT1_PG	VOUT2_PG	FT_ASSERT	I2C_ERR	POR			
ERR _FLAG_1	R	0x02	VOUT_1_OV	VOUT_1_UV	VOUT_2_OV	VOUT_2_UV	RSV	RSV	LDO_1_StB	LDO_2_StB			
ERR _FLAG_2	R	0x03	LDO_1_OC	LDO_2_OC	RSV	ОТ	RSV	RSV	RSV	RSV			
DEV_CTRL	W/R	0x04	RSV	LDO_1_EN	LDO_2_EN	SHUTDOWN	ADC-EN	SOFT_RST	RSV	FAULT _HANDLE			
MONITO	RING												
MON _VOUT_1	R	0x05				VOUT	1_MON						
MON _VOUT_2	R	0x06				VOUT2	2_MON						
MON _IOUT_1	R	0x07				IOUT1	_MON						
MON _IOUT_2	R	0x08				IOUT2	2_MON						
POWER I	MANA	GEMEN	NT										
SET_VOUT	W/R	0x09	I2C_REC	VOUT1_STEP			VOUT	1_SET					
SET_VOUT	W/R	0x0A	POWER_SEQ	VOUT2_STEP			VOUT	2_SET					
RSVD	W/R	0x0B		RSV									
RSVD	W/R	0x0C				R	SV						
SET_PG_U VOV	W/R	0x0D	VOUT1_ OV_THR	VOUT1_ UV_THR	VOUT2 _OV_THR	VOUT2 _UV_THR	VOUT1_PG _H_THR	VOUT1_PG _L_THR	VOUT2_PG _H_THR	VOUT2_PG _L_THR			
SET_IOUT_ LIM_1	W/R	0x0E	LDO1_TRC	LDO2_TRC	RSV	IOUT_1_OC_THR							
SET_IOUT_ LIM_2	W/R	0x0F	RSV	RSV	OC_MIN			IOUT_2_OC_THR					

MPQ2022 - DUAL PHANTOM ANTENNA LDO WITH I²C AND ADC FOR DIGITAL DIAGNOSIS

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REGISTER DESCRIPTION

DEV_REV *				Read	only	Address: 0x00				
DEVICE REVIS	ION AND INFORM	IATION		POR/Soft Reset Value: N/A						
D7	D6	D5	D4	D3	D2	D1	D0			
	SILLICON_INFO									
D[7:0]	SILLICON_INFO		•	Silicon information						

DEV_STAT							Address: 0x01		
DEVICE STATU				POR/Soft Reset Value: 00000000					
D7	D6	D5	D4	D3	D2	D1	D0		
RSV	LDO_1 _ACTIVE	LDO_2 _ACTIVE	VOUT1_PG	VOUT2_PG	FT _ASSERT	I2C_ERR	POR		
D[7]	RSV			Reserved, always	reads as 0				
D[6]	LDO 1 ACTIVI	=		0: LDO 1 is NOT active					
D[0]	LDO_I_ACTIVI			1: LDO 1 is active)				
D[5]	LDO 2 ACTIVI	=		0: LDO 2 is NOT active					
D[3]	LDO_Z_ACTIVI			1: LDO 2 is active					
D[4]	VOUT1 PG			0: LDO 1 output voltage is NOT power good					
D[4]	V0011_FG			1: LDO 1 output voltage is power good					
D[3]	VOUT2 PG			0: LDO 2 output voltage is NOT power good					
ادام	V0012_FG			1: LDO 2 output voltage is power good					
D[2]	FT ASSERT			0: /FT pin is not asserted					
الا	I I_AGGLIKI			1: /FT pin is asserted (Active LOW)					
D[1]	I2C ERR			0: No I2C communication error					
רוו	IZO_EKK			1: I2C communication error occurred					
D[0]	POR			0: No power on reset event					
p[o]	POR			Power on reset event occurred and finished					

ERR_FLAG_1				Read only Address: 0x02					
DEVICE ERROR	R FALGS: UV OV			POR/Soft Reset Value: 00000000					
D7	D6	D5	D4	D3	D2	D1	D0		
VOUT_1_OV	VOUT_1_UV	VOUT_2_OV	VOUT_2_UV	VLDO_IN_OV	VLDO_IN_UV	LDO_1_StB	LDO_2_StB		
D[7]	VOUT 1 OV		0: Clear to 0 who	en no over voltage	on OUT1				
[יון	VO01_1_0V		1: Over voltage	detected on OUT1					
D[6]	VOUT 1 UV			en no under voltag					
D[0]	VO01_1_0V			e detected on OUT					
D[5]	VOUT 2 OV		0: Clear to 0 when no over voltage on OUT2						
D[J]	V001_2_0V		1: Over voltage	detected on OUT2	2				
D[4]	VOUT 2 UV		0: Clear to 0 when no under voltage on OUT2						
الح الح	VOO1_2_0 V		1: Under voltage detected on OUT2						
D[3]	RSV		Reserved, always reads as 0						
D[2]	RSV		Reserved, alway	Reserved, always reads as 0					
DIAI	LDO_1_StB		0: Clear to 0 who	0: Clear to 0 when no short-to-battery on LDO_1					
D[1]	LDO_1_SIB		1: Short-to-batte	1: Short-to-battery detected on LDO_1					
D[0]	LDO 2 StB	·	0: Clear to 0 when no short-to-battery on LDO_2						
וסןט	LDO_Z_SIB		1: Short-to-batte	ry detected on LD	0_2				

ERR_FLAG_2				Read only Address: 0x03					
DEVICE ERRO	R FALGS: OC OT			POR/Soft Reset Value: 00000000					
D7	D6	D5	D4	D3	D2	D1	D0		
LDO_1_OC	LDO_2_OC	RSV	OT	RSV	RSV	RSV	RSV		
D[7]	LDO 1 OC			0: Clear to 0 whe	en no over current	on OUT1			
[יון	LDO_1_OC			1: Over current of	detected on OUT1				
Diej	LDO 2 OC			0: Clear to 0 whe	en no over current	on OUT2			
D[6]	LDO_2_OC			1: Over current detected on OUT2					
D[5]	RSV			Reserved, always reads as 0					
ا ا	1101			110001700, always roads do 0					
D[4]	ОТ			0: Clear to 0 when no over temperature					
الما				1: Over temperature detected					
D[3:0]	RSV			Reserved, always reads as 0					

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REGISTER DESCRIPTION (continued)

	_CTRL	Read a	nd Write				Address: 0x04			
DEVICE CONT	ROL			POR/Soft Reset Value: 01100001						
D7	D6	D5	D4	D3	D2	D1	D0			
RSV	LDO_1_EN	LDO_2_EN	SHUTDOWN	ADC-EN	SOFT_RST	RSV	FAULT _HANDLE			
D[7]	RSV	RSV		s reads as 0						
D[6]	LDO_1_EN	LDO_1_EN		bled bled						
D[5]	LDO_2_EN	LDO_2_EN		0: LDO 2 is disabled 1: LDO 2 is enabled						
D[4]	SHUTDOWN		0: No shutdown command 1: Device is forced shutdown							
D[3]	ADC-EN		0: ADC is disable 1: ADC is enable							
D[2]	SOFT_RST		0: No soft reset request 1: Soft reset is requested							
D[1]	RSV		Reserved, alway	s reads as 0						
D[0]	FAULT_HANDL	E	0: Latch mode 1: Auto retry mode after 100ms blanking time							

MON_VOUT_1		Read only			Address: 0x				
MONITORED LDO1 OUTPUT VOLTAGE					POR/Soft Reset V	/alue: 00000000			
D7	D7 D6 D5 D4			D3	D2	D1	D0		
			VOUT [,]	1_MON					
			•	by ADC, the value	is refreshed each	time read.			
D[7:0]	VOUT1_MON	Lsb=55mV; VOL	$JT1_MON = D[7:$	0]*55mV.					
		For example, D[7:0]=(10100100) ₂	\rightarrow (164) ₁₀ , then V	OUT1 = 164*55mV	= 9.02V.			

MON_VOUT_2	MON_VOUT_2 Read only			Address: 0x				
MONITORED LDO2 OUTPUT VOLTAGE			POR/Soft Reset Value: 00000000					
D7	D6 D5 D4 D				D2	D1	D0	
			VOUT2	2_MON				
D[7:0]	Record monitored OUT2 voltage by ADC, the value is refreshed each time read.							

MON_IOUT_1		Read	only				Address: 0x07	
MONITORED LDO1 OUTPUT CURRENT			POR/Soft Reset Value: 00000000					
D7	D7 D6 D5 D4			D3	D2	D1	D0	
			IOUT1	_MON				
D[7:0]	Record monitored OUT1 current by ADC, the value is refreshed each time read.							

MON_IOUT_2		Read	only	Address: 0				
MONITORED LDO2 OUTPUT CURRENT					POR/Soft Reset V	/alue: 00000000		
D7 D6 D5 D4			D3	D2	D1	D0		
			IOUT2	_MON				
D[7:0]	Record monitored OUT2 current by ADC, the value is refreshed each time read. Lsb=1.2mA; IOUT2_MON = D[7:0]*1.2mA. For example, D[7:0]=(11111010) ₂ \rightarrow (250) ₁₀ , then I_{OUT2} = 250*1.2mA = 300mA.							
		For example, D[7:0]=(11111010) ₂	\rightarrow (250) ₁₀ , then I ₀	_{UT2} = 250*1.2mA =	: 300mA.		

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REGISTER DESCRIPTION (continued)

SET_VOUT_1			Read ar	nd Write	Address: 0x09				
LDO1 OUTPUT	VOLTAGE SETT	ING				POR/Soft Reset V	/alue: 01101000		
D7	D6	D5	D4 D3 D2 D1						
I2C_REC	VOUT1_STEP			VOUT	1_SET				
D[7]	I2C_REC		Recover I ² C communication 0: default, no action 1: write '1' to recover I ² C communication from locked status since PEC fault						
D[6]	VOUT1_STEP		Set OUT1 step voltage, default 200mV/step 0: 100mV 1: 200mV						
D[5:0]	VOUT1_SET		Set OUT1 voltage, Vout1=1V+ D[5:0]*step Default D[5:0]= $(101000)_2 \rightarrow (40)_{10}$, then default Vout1 = 1V+ $40*200$ mV = 9V						

SET_VOUT_2			Read ar	nd Write	Address: 0x0A				
LDO2 OUTPUT	VOLTAGE SETT	ING			POR/Soft Reset Value: 0110100				
D7	D6	D5	D4	D3	D2	D1	D0		
POWER_SEQ	VOUT2_STEP			VOUT	2_SET				
רוקו	POWER SEQ		0: OUT1 and Ol	JT2 is powered sir	nultaneously				
D[7]	POWER_SEQ		1: OUT2 is delay	yed 100ms					
			Set OUT2 step voltage, default 200mV/step						
D[6]	VOUT2_STEP		0: 100mV						
			1: 200mV						
D[5:0] VOUT2_SET Set OUT2 voltage, Vout2=1V+ D[5:0]*step									
D[3.0]	VOU12_3E1		Default D[5:0]=($101000)_2 \rightarrow (40)_{10}$, then default Vou	t1 = 1V + 40*200m	1V = 9V		

SET_VPREBOOST			Read a	nd Write	Address: 0x0B			
RSVD					F	POR/Soft Reset V	/alue: 01111000	
D7	D6	D5	D4	D3	D2 D1 D			
			RS	SVD				
D[7:0]	RSV		Reserved.					

SET_VPREBOO	OST_ON		Read a	nd Write	Addres			
RSVD					POR/Soft Reset Value: 01001100			
D7	D6	D5	D4	D3	D2 D1 D0			
			RS	SVD				
D[7:0] RSV			Reserved.					

SET_PG_UVO\	1			Read and Write	Address: 0x0D				
POWER GOOD	/LDO UV OV SET	TINGS			F	POR/Soft Reset V	/alue: 00000000		
D7	D6	D5	D4	D3	D2	D1	D0		
VOUT1_OV	VOUT1_UV	VOUT2_OV	VOUT2_UV	VOUT1_PG	VOUT1_PG	VOUT2_PG	VOUT2_PG		
_THR	_THR	_THR	_THR	_H_THR	_L_THR	_H_THR	_L_THR		
D[7]	VOLITA OV TH	OUT1 OV THR 0:115% of set VOUT1 as over voltage threshold							
<i>D[1]</i>	VOOT1_0V_111	IX		OUT1 as over volt	0				
D[6]	VOUT1 UV TH	D	0:75% of set VO	UT1 as under volt	tage threshold				
الال	VO011_0V_111	N	1:80% of set VOUT1 as under voltage threshold						
D[5]	VOLITA OV TH	D	0:115% of set VOUT2 as over voltage threshold						
נפוט	VOU12_0V_1H	VOUT2_OV_THR		OUT2 as over volt	age threshold				
DIAI	VOUT2 UV TH	D	0:75% of set VOUT2 as under voltage threshold						
D[4]	V0012_0V_111	N	1:80% of set VOUT2 as under voltage threshold						
Disi	VOUT1 PG H	TUD	0: 105% of set voltage as the upper boundary of OUT1 PG threshold						
D[3]	VOUT1_FG_H_	ITIK	1: 110% of set voltage as the upper boundary of OUT1 PG threshold						
Diai	VOUT1_PG_L_	TUD	0: 90% of set vo	Itage as the lower	boundary of OUT	1 PG threshold			
D[2]	VOUTT_PG_L_	ITIK	1: 95% of set vo	Itage as the lower	boundary of OUT	1 PG threshold			
DIAI	VOUT2_PG_H_THR 0: 105% of set voltage as the upper boundary of OUT2 PG threshold								
D[1]	V0012_FG_H_	ITIK	1: 110% of set voltage as the upper boundary of OUT2 PG threshold						
Dioi	VOUT2 PG L	TUD	0: 90% of set voltage as the lower boundary of OUT2 PG threshold						
D[0]	VOU12_PG_L_	I III	1: 95% of set vo	Itage as the lower	boundary of OUT	2 PG threshold			

MPQ2022 - DUAL PHANTOM ANTENNA LDO WITH I²C AND ADC FOR DIGITAL DIAGNOSIS

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

REGISTER DESCRIPTION (continued)

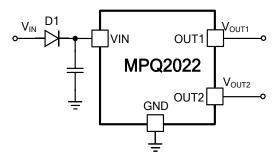
SET_IOUT_LIM_1			Read and Write		Address: 0x0E				
LDO1 CURREN	IT LIMIT THRESH	IOLD			POR/Soft Reset Value: 00010000				
D7	D6	D5	D4	D3	D2	D1	D0		
LDO1-TRC	LDO2-TRC	RSV	IOUT_1_OC_THR						
D[7]	LDO1-TRC		0:LDO1 tracking mode disabled 1:LDO1 tracking mode enabled						
D[6]	LDO2-TRC		0:LDO2 tracking mode disabled 1:LDO2 tracking mode enabled						
D[5]	RSV		Reserved, always reads as 0						
D[4:0]	IOUT_1_OC_T	HR[4:0]	Set OUT1 overcurrent threshold; Lsb=6.25mA; llimit= D[4:0]*6.25mA+OC_MIN; OC_MIN is set by Reg0x0F[5] bit. Default D[4:0]=(10000) ₂ \rightarrow (16) ₁₀ , llimit = 16 *6.25+300=400mA						

SET_IOUT_LIM_2			Read and Write		Address: 0x0F			
LDO2 CURRE	NT LIMIT THRESH	IOLD			POR/Soft Reset Value: 00010000			
D7	D6	D5	D4	D3	D2	D1	D0	
RSV	RSV	OC_MIN	IOUT_2_OC_THR					
D[7:6]	RSV		Reserved					
D[5]	OC_MIN		Set minimum over current threshold for LDO1 and LDO2. Default 300mA. 0: 300mA 1: 100mA					
D[4:0]	IOUT_2_OC_TH	HR[4:0]	Set OUT2 overcurrent threshold; Lsb=6.25mA; Ilimit= D[4:0]*6.25mA+OC_MIN; OC_MIN is set by Reg0x0F[5] bit. Default D[4:0]=(10000) ₂ \rightarrow (16) ₁₀ , Ilimit = 16 *6.25+300=400mA					

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

APPLICATION INFORMATION

Selecting Input Capacitor


For efficient operation, place a ceramic capacitor between 1µF and 10µF of dielectric type (X5R or X7R) between the input pin and ground. Larger values in this range improve line transient response.

Selecting Output Capacitor

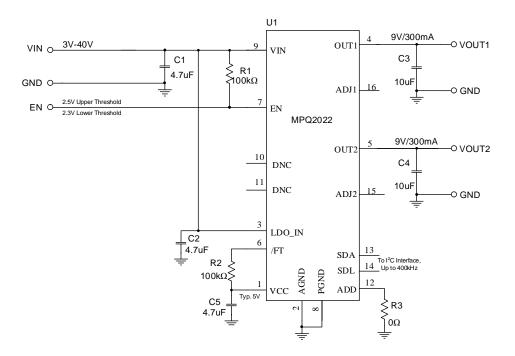
For stable operation, use a ceramic capacitor of type X5R or X7R between 4.7µF and 22µF. Larger values in this range improve load transient response and reduce noise. Output capacitors of other dielectric types may be used, but they are not recommended as their capacitance can deviate greatly from their rated value over temperature.

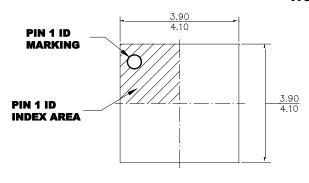
External Reverse Voltage Protection

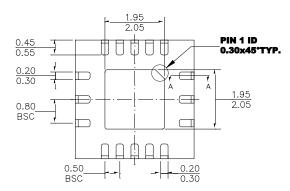
In some situations, e.g. a backup battery is connected as MPQ2022 load, the output voltage may be held up while the input is either pulled to ground, pulled to some intermediate voltage or is floating. Thus, the output voltage is higher than input voltage. Since the MPQ2022 PMOS pass element has a body diode, a current will conduct from the output to input and is not internally limited. It's possible that the IC will be damaged by this unlimited reverse current. To avoid this, it's recommended to place an external diode at input like below.

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

TYPICAL APPLICATION CIRCUITS

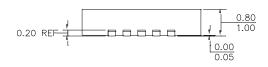


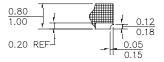

Figure 8: VouT1=9V, VouT2=9V



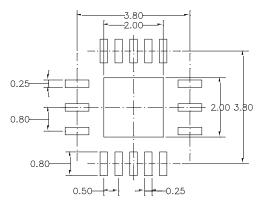
PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

PACKAGE INFORMATION


QFN-16 (4mmx4mm) Wettable Flank



TOP VIEW

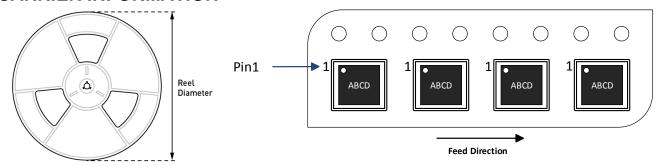

BOTTOM VIEW

SIDE VIEW

SECTION A-A

RECOMMENDED LAND PATTERN

NOTE:


- 1) ALL DIMENSIONS ARE IN MILLIMETERS.
- 2) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH.
- 3) LEAD COPLANARITY SHALL BE 0.08 MILLIMETERS MAX.
- 4) DRAWING REFERENCE TO JEDEC MO-220.
- 5) DRAWING IS NOT TO SCALE.

MPQ2022 - DUAL PHANTOM ANTENNA LDO WITH I2C AND ADC FOR DIGITAL DIAGNOSIS

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

CARRIER INFORMATION

Part Number	Package Description	Quantity/Reel	Quantity/Tube	Quantiy/Tray	Reel Diameter	Carrier Tape Width	Carrier Tape Pitch
MPQ2022GRE- xxxx-AEC1-Z	QFN 4x4	5000	N/A	N/A	13in	12mm	8mm

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

单击下面可查看定价,库存,交付和生命周期等信息

>>MPS(芯源系统)