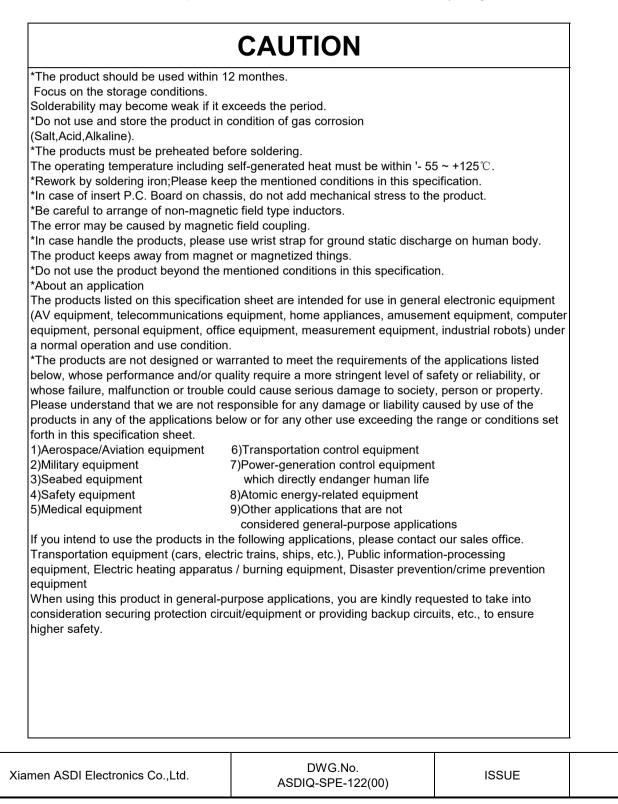
	<spe< td=""><td></td><td>TION></td><td></td></spe<>		TION>	
			SPEC.No. AS Date: Au	SDIQ-SPE-122(00) Ig.05,2022
То :				
	CUSTOM	ER'S PRODUCT N/	AME	
	ASDI PR STPM-S	ODUCT NAME: SERIES		
RECEIPT CONFIRI	ΜΑΤΙΩΝ			
	DITIONAL CONSENT		CONDITIONAL CO	DNSENT
	APPROVED		CHECKED	
ASDI SIGNATURE				
	APPROVED Xianglong Li	CHECKED Liang Wang	PREPARED Jiayin Cai	

Xiamen ASDI Electronics Co.,Ltd.


REV.	DATE	DESCRIPTION	APPROVED	CHECKED	PREPARED
00	Aug.05,2022	New release	Xianglong Li	Liang Wang	Jiayin Cai

CAUTION WHEN HANDLING

Before use the products, please read this specification.

CAUTION FOR SAFETY USING

When use the products, be careful to mentioned below for safety using.

CUSTOMER	ASDI PART No.	CUSTOMER'S DWG NO.
	STPM-SERIES	

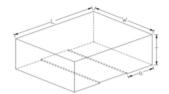
1.INDEX ______

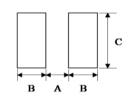
Listed item	Attachment&Tables	Page
1.Features	Please see (1)	3/8
2.Applications	Please see (2)	3/8
3.Dimensions	Please see (3)	3/8
4.Part Numbering	Please see (4)	3/8
5.Electrical Specifications	Please see (5)	4/8
6.Material List	Please see (6)	4/7
7.Reliability Tests	Please see (7)	5/8
8.Reliability Tests	Please see (8)	5/8
9.Soldering and Mounting	Please see (9)	7/8
10.Packaging Information	Please see (10)	7/8
11.Note	Please see (11)	8/8

2.Manufacturing Location

China

	DWG.NO.	ASDIQ-SPE-122(00)	PAGE 2/8
Xiamen ASDI E	Electronics	Co.,Ltd.	-


(1)Features


- 1.Soft saturation.
- 2. High current, low DCR, high efficiency.
- 3.Very low acoustic noise and very low leakage flux noise.
- 4.High reliability.
- 5.100% Lead (Pb)-Free and RoHS compliant.
- 6. Operating temperature -55~+125°C (Including self-temperature rise)

(2)Applications

Note PC power system, incl. IMVP-6 DC/DC converter.

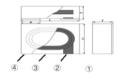
(3)Dimensions

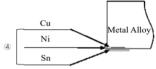
Series	L(mm)	W(mm)	T(mm)	a(mm)	Α	В	с
STPM160810A	1.6±0.2	0.8±0.2	1.0Max	0.4±0.2	0.6~0.8	0.6-0.9	0.6-0.9
31 FIVI 1000 10A	[0.063±0.008]	[0.031±0.008]	[0.039Max]	[0.016±0.008]	0.0~0.0	8 0.6~0.8 0.6~0.8 2 0.8~1.2 1.2~2.0 2 0.8~1.2 1.2~2.0	
STPM201208A	2.0±0.2	1.2±0.2	0.8Max	0.8Max 0.6±0.2 0.8~1.2 0.8		0.9-1.2	1 2-2 0
31 FIM201200A	[0.079±0.008]	[0.047±0.008]	[0.031Max]	[0.024±0.008]	0.0~1.2	0.0~1.2	2 1.2.2.0
STPM201210A	2.0±0.2	1.2±0.2	1.0Max	0.6±0.2	0.8~1.2 0.8~1	0.9-1.2	1 2-2 0
31FIM201210A	[0.079±0.008]	[0.047±0.008]	[0.039Max]	[0.024±0.008]	0.0~1.2	0.0~1.2	1.2~2.0
STPM201610A	2.0±0.2	1.6±0.2	1.0Max	0.6±0.2	0.8~1.2	0.0.1.0	10.00
51PM201010A	[0.079±0.008]	[0.063±0.008]	[0.039Max]	[0.024±0.008]	0.0~1.2	0.0~1.2	1.2~2.0
STPM252010A	2.5±0.2	2.0±0.2	1.0Max	0.8±0.2	1.2~1.6	0.8~1.2	1 9- 2 4
31 FIVI2520 TUA	[0.098±0.008]	[0.079±0.008]	[0.039Max]	[0.031±0.008]	1.2~1.0	0.0~1.2	1.8~2.4

Note:

1. Inductance tolerance code (M=±20%).

- 2. Rated current: Isat or Irms, whichever is smaller.
- 3. Isat: Max.Value, DC current at which the inductance drops less than 30% from its value without current;
- Typ. Value, DC current at which the inductance drops 30% from its value without current.
- 4. Irms: DC current that will cause the temperature rise (ΔT) from 22°C ambient.
- 5. For Max. Value, $\Delta T \le 40^{\circ}$ C; for Typ. Value, ΔT is approximate 40° C.

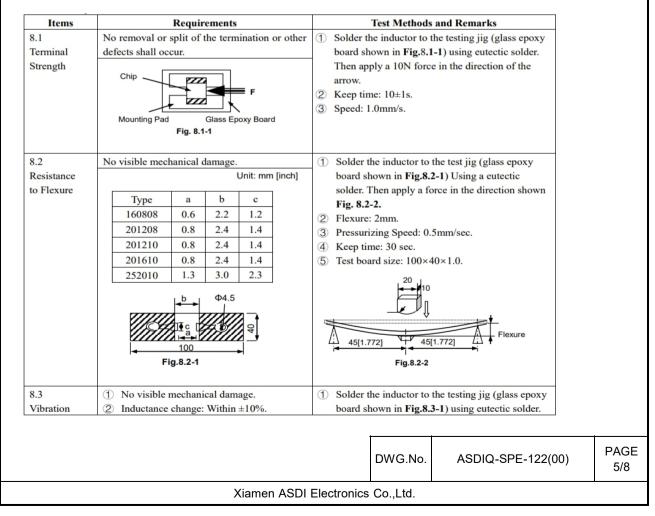

(4)Part Numbering


STPM	201610	Α		R47	м	
А	В	С		D	E	
A: Series B: Dimension C: Type D: Inductance E: Inductance Tole	R47=0.47 erance M=±20%					
				DWG.No.	ASDIQ-SPE-122(00)	PAGE 3/8
		Xiamen A	SDI Electronic	s Co.,Ltd.		

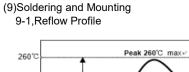
(5)Electrical Specification

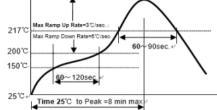
ASDI Part Number	Inductance L0 (uH)±20% @ 0 A		l rms (A) Max.	l sat (A) Max.	I sat (A) Typ.	DCR (mΩ) Max.	DCR(mΩ) Typ.	Thickness (mm)
STPM160810A-1R0M	1.00	2.0	1.8	2.1	2.3	110	100.0	1.0Max
STPM160810A-2R2M	2.20	1.1	1.0	1.2	1.3	290	272.0	1.0Max
STPM201208A-1R0M	1.00	3.0	2.7	3.2	3.6	70	63.0	1.0Max
STPM201208A-2R2M	2.20	1.6	1.3	1.8	2.2	155	144.0	1.0Max
STPM201210A-R47M	0.47	4.5	4.1	4.6	5.1	27	24.00	1.0Max
STPM201610A-R47M	0.47	4.8	4.4	4.8	5.3	22	19.00	1.0Max
STPM201610A-1R0M	1.00	3.5	3.2	3.5	4.0	42	38.00	1.0Max
STPM201610A-2R2M	2.20	2.3	2.0	2.4	2.7	95	85.00	1.0Max
STPM252010A-R47M	0.47	5.5	5.0	6	6.7	20	17.00	1.0Max
STPM252010A-1R0M	1.00	4.5	4.0	4.5	5.0	40	36.00	1.0Max

(6)Material List

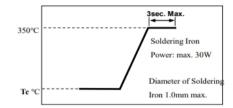

N0.	Description	Specification
1	Metal Alloy Body	Metal Alloy Powder
2	Inner Wire	Enameled Copper Wire
3	Pull-out Electrode	Cu
(4)	Terminal	Electro-Plating: Cu/Ni/Sn

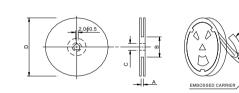
DWG.No	. ASDIQ-SPE-122(00)	PAGE 4/8
Xiamen ASDI Electronics Co.,Ltd.		


(7)Electrical Tests

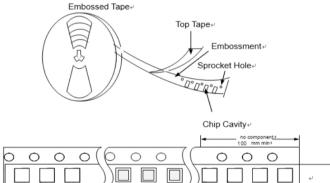

Test Item	Performance	Test Condition
DC Resistance (DCR)		Test equipment: High Accuracy Milliohmmeter-AX-
		1152D
	Refer to Electrical	a. Test equipment: High Accuracy RF Impedance
Inductance (L)	Characteristics.	Analyzer-WK 6500B.
		b. Test signal:1V.
		c. Test frequency refers to Electrical Characteristics.
		a. Set test current to be 0 mA.
		b. Measure initial temperature of chip surface.
		c. Gradually increase voltage and measure chip
Temperature Rise Current (Irms)	Approximately	temperature for corresponding current.
	∆T≦40°C.	d. Definition of Temperature Rise Current (Irms) :
		Irms is direct electric current as chip surface
		temperature rose just 40°C against chip initial surface
		temperature.
		a. Test equipment: High Accuracy RF Impedance
		Analyzer- WK 6500B.
		b. Measuring Frequency: 1MHz.
Saturation Current (Isat)	$\triangle L \leq 30\%$ typical.	c. Test Current: 1mA.
		d. Definition of Saturation Current (Isat) : Isat is the
		value of DC current as inductance L (μ H) decreased
		just 30% against initial value
	Refer to Electrical	a. Test equipment: High Accuracy RF Impedance
Self-Resonant Frequency (SRF)	Characteristics.	AnalyzerWK 6500B.
		b. Test signal: 1V.

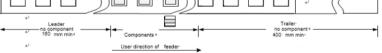
(8)Reliability Tests


		DI Electronics Co.,Lt	DWG.No.	ASDIQ-S	SPE-122(00)	
					NDF 400(00)	Т
Loading at High Temperature (Life Test)	(2) Inductance change: Within ±10%.	 ② Duration: 1000+24 H ③ Applied current: Rat ④ The chip shall be stat for 1~2 hours before measuring. 	ed current.	mal condition		
8.13	① No visible mechanical damage.	 (5) The chip shall be stated for 1~2 hours (1) Temperature: 85±2% 	bilized at nor	mal condition		
8.12 Loading Under Damp Heat	 No visible mechanical damage. Inductance change: Within ±10%. 	Temperature: 60±2% Humidity: 90% to 95 Duration: 1000+24 H Applied current: Rat	C 5% RH. nours.		-	
8.11 Damp Heat (Steady States)	 No visible mechanical damage. Inductance change: Within ±10%. 	 Temperature: 60±2° Humidity: 90% to 9 Duration: 1000⁺²⁴ h The chip shall be static-2 hours before me 	5% RH. ours. bilized at norr	mal condition for		
8.10 Resistance to High Temperature	 No mechanical damage. Inductance change: Within ±10%. 	for 1~2 hours before (1) Temperature: 125±2 (2) Duration: 1000+24 ho (3) The chip shall be sta for 1~2 hours before	°C ours. bilized at nor	mal condition		
8.9 Resistance to Low Temperature	 No mechanical damage. Inductance change: Within ±10%. 	 Temperature: -40±2⁴ Duration: 1000⁺²⁴ hd The chip shall be stated 	ours. bilized at nor	mal condition		
8.8 Thermal Shock	 No mechanical damage. Inductance change: Within ±10%. 30 min. 30 min. 30 min. 30 min. 40°C 30 min. 40°C Fig. 8.8-1 	 Temperature, Time: -40°C for 30±3 min- Transforming interva Tested cycle: 100 cy The chip shall be sta for 1~2 hours before 	→ 125°C for 3 al: 20 sec.(Ma cles. bilized at nor	30±3min. ix.).		
		260°C 217°C Mas Ramp Up Rate-3°C/a Mas Ramp Down Rate-3°C/a 200°C 150°C 25°C 10°C	60 - 90s			
8.7 Resistance to Soldering Heat	 No visible mechanical damage. Inductance change: Within ±10%. 	 Flux: 25% Resin and Re-flowing Profile: Test board thickness Test board material: The chip shall be sta for 1~2 hours before 	Please refer to : 1.0mm glass epoxy re bilized at nor	Fig. 8.7-1.		
Temperature 8.6 Solderability	initial value measuring at 25°C. ① No visible mechanical damage. ② Wetting shall exceed 90% coverage.	Reference temperature: ① Solder temperature: ② Duration: 3 sec. ③ Solder: Sn/3.0Ag/0.1 ④ Elem 25% Design	245±2℃ 5Cu.			
Dropping 8.5	② Inductance change: Within ±10%. Inductance change should be within ±20% of	a height of 100 cm. Temperature range: -40%				
8.4	Glass Epoxy Board Fig. 8.3-1	to 10 Hz shall be tra minute. This motion of 2 hours in each 3r directions (total of 6 Drop chip inductor 10 tin	shall be appli mutually perp hours).	ed for a period endicular		
	Cupad Solder mask	 1.5mm, the frequence between the approxi The frequency range to 10 Hz shall be term 	mate limits of from 10 to 5:	10 and 55 Hz. 5 Hz and return		


Preheat condition	150~200°C/60~120sec
Allowed time above	217°C: 60~90sec
Max temp	260°C
Max time at Max temp	10sec
Solder paste	Sn/3.0Ag/0.5Cu
Allowed Reflow time	2x Max

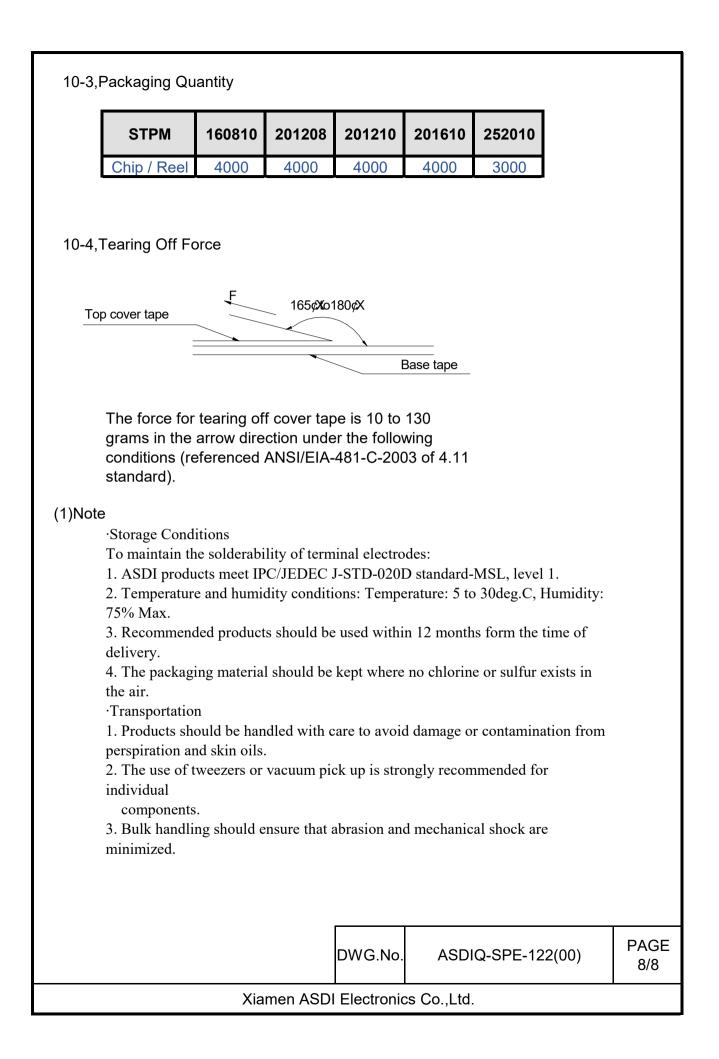
9-1, Reflow Profile


Iron soldering power	Max.30W
Pre-heating	150 °C / 60sec
Soldering Tip temperature	350°C Max
Soldering time	3sec Max
Solder paste	Sn/3.0Ag/0.5Cu
Max	1 times for iron soldering


(10)Packaging Information 10-1,Reflow Profile

A(mm)	B(mm)	C(mm)	D(mm)
8.4	58	13.5	178

10-2, Tape Dimension


COVER TAPE

Туре	Ao	Bo	Р	Ро	P 1	Ko max	t max	W
160810	1.10±0.1	1.90±0.1	4.0±0.1	4.0±0.1	2.0±0.05	1.3	0.3	8.0±0.1
201208	1.50±0.1	2.30±0.1	4.0±0.1	4.0±0.1	2.0±0.05	1.1	0.3	8.0±0.1
201210	1.50±0.1	2.30±0.1	4.0±0.1	4.0±0.1	2.0±0.05	1.3	0.3	8.0±0.1
201610	1.90±0.1	2.30±0.1	4.0±0.1	4.0±0.1	2.0±0.05	1.3	0.3	8.0±0.1
252010	2.30±0.1	2.80±0.1	4.0±0.1	4.0±0.1	2.0±0.05	1.3	0.3	8.0±0.1

Xiamen ASDI Electronics Co.,Ltd.

PAGE

7/8

单击下面可查看定价,库存,交付和生命周期等信息

>>ASDI