

Data sheet

SAW Tx post PA filter TD-LTE and 5G band 41

Part number: B8373

Ordering code: B39262B8373L210

Date: July 14, 2022

Version: 2.5

DCN: 80-PA243-503 Rev. B

Qualcomm products mentioned herein are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

RF360 Europe GmbH
Anzinger Straße 13
81671 Munich, Germany
© 2022 Qualcomm Technologies, Inc. and/or its subsidiaries. All rights reserved

These materials, including the information contained herein, may be used only for informational purposes by the customer. Qualcomm Technologies, Inc. and/or its subsidiaries assume no responsibility for errors or omissions in these materials or the information contained herein and reserve the right to make changes to the product(s) or information contained herein without notice. The materials and information are provided on an AS IS basis, without warranty, either expressed or implied, with respect to the materials, or any output or results based on the use, application, or evaluation of such materials, including without limitation, with respect to the non-infringement of trademarks, patents, copyrights or any other intellectual property rights or other rights of third parties.

No use of this documentation or any information contained herein grants any license, whether express, implied, by estoppel or otherwise, to any intellectual property rights, including, without limitation, to any patents owned by QUALCOMM Incorporated or any of its subsidiaries.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of RF360 Europe GmbH.

Qualcomm is a trademark or registered trademark of Qualcomm Incorporated. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

Please read **Cautions and warnings** and **Important notes** at the end of this document.

Page 2 of 20

July 14, 2022

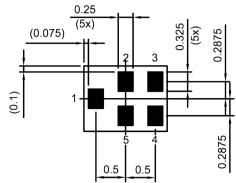
May contain US and international export controlled information.

Table of contents

1	Application	4
2	Features.	4
3	Package	5
4	Pin configuration	5
5	Matching circuit.	6
6	<u>Characteristics</u> .	7
7	Maximum ratings	9
8	Transmission coefficient	10
9	Reflection coefficients	11
10	Packing material	12
11	Marking	16
12	Soldering profile	17
13	Annotations	18
	Cautions and warnings.	
	Important notes	20

1 Application

- N41 post PA Tx (2496-2690 MHz) Post PA Tx filter for 4G and 5G
- TD-LTE and 5G band 41: 2593 MHz (pass band 194 MHz)
- High Power User Equipment (HPUE) application
- Low-loss RF filter for mobile telephone
- Usable pass band 194 MHz
- $50\Omega / 50\Omega$ unbalanced to unbalanced operation for all filters
- Low insertion loss with WiFi co-existence
- High attenuation in GPS, B3, B39 and n79


2 Features

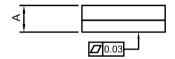
- Low insertion attenuation
- Package size 1.4±0.05 mm × 1.1±0.05 mm
- Package height 0.63 mm (max.)
- Approximate weight 3 mg
- RoHS compatible
- Package for Surface Mount Technology (SMT)
- Ni/Au-plated terminals
- Electrostatic Sensitive Device (ESD)
- Moisture Sensitivity Level 3 (MSL3)

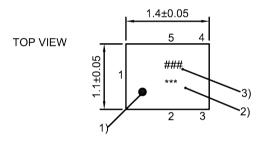
3 Package

Europe GmbH

BOTTOM VIEW

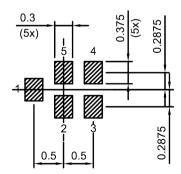
Pad and pitch tolerance ±0.05


4 Pin configuration


■ 1 Input

■ 4 Output

■ 2, 3, 5 Ground


SIDE VIEW

- 1) Marking for pad number 1
- 2) Encoded lot number
- 3) Please refer to caption below

Land pattern THRU VIEW

Landing pad tolerance -0.02

Figure 1: Drawing of package with package height A = 0.63 mm (max.). See Sec. Package information (p. 19).

5 Matching circuit

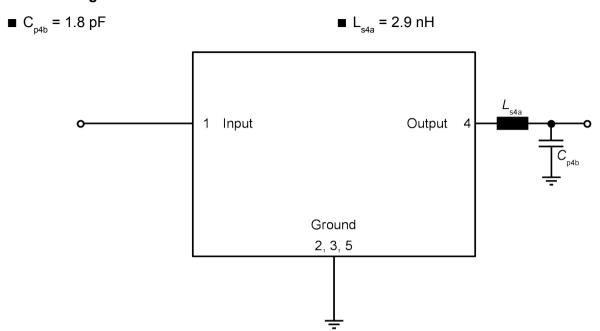


Figure 2: Schematic of matching circuit.

External shunt inductor for ESD protection is recommended at any ports towards antenna.

6 Characteristics

Temperature range for specification $T_{\text{SPEC}} = -30 \,^{\circ}\text{C} \dots +85 \,^{\circ}\text{C}$ Input terminating impedance $Z_{\text{IN}} = 50 \,\Omega$

Output terminating impedance $Z_{OUT} = 50 \Omega$ with ext. circuitry.¹⁾

Characteristics				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$	
Center frequency			f _C		2593	_	MHz
Maximum insertion attenuation			α_{max}				
	2496 2500	MHz		_	2.6	3.5	dB
	2500 2515	MHz		_	2.4	3.2	dB
	2515 2545	MHz		_	2.0	2.8	dB
	2545 2575	MHz		_	1.7	2.8	dB
	2575 2675	MHz		_	1.7	2.8	dB
	2675 2690	MHz		_	1.7	3.0	dB
Amplitude ripple (p-p)							
	2496 2690	MHz	$\Delta\alpha^{\scriptscriptstyle 2)}$	_	0.7	2.3	dB
	2515 2675	MHz	$\Delta\alpha^{\scriptscriptstyle 3)}$	_	0.4	1.5	dB
Maximum VSWR			$VSWR_{max}$				
@ input port	2496 2690	MHz		_	1.6	2.2	
	2515 2675	MHz		_	1.6	2.2	
@ output port	2496 2690	MHz		_	1.7	2.2	
	2515 2675	MHz		_	1.5	2.2	
Average attenuation			$\alpha_{\text{WLAN,avg}}^{\qquad 4)}$				
WiFi ch1	2402 2422	MHz		30	51	_	dB
WiFi ch2	2407 2427	MHz		30	51	_	dB
WiFi ch3	2412 2432	MHz		30	50	_	dB
WiFi ch4	2417 2437	MHz		30	47	_	dB
WiFi ch5	2422 2442	MHz		30	44	_	dB
WiFi ch6	2427 2447	MHz		30	43	_	dB
WiFi ch7	2432 2452	MHz		30	43	_	dB
WiFi ch8	2437 2457	MHz		30	43	_	dB
WiFi ch9	2442 2462	MHz		30	43	_	dB
WiFi ch10	2447 2467	MHz		30	43	_	dB
WiFi ch11	2452 2472	MHz		20	41	_	dB
WiFi ch12	2457 2477	MHz		7	30	_	dB
WiFi ch13	2462 2482	MHz		3	18	_	dB
Minimum attenuation			$\boldsymbol{\alpha}_{\text{min}}$				
	617 960	MHz		35	43	_	dB
	1166.22 1254	MHz		32	40	_	dB
	1559.052 1605.89	MHz		33	40	_	dB
	1710 1785	MHz		33	45	_	dB
	1805 1880	MHz		32	44	_	dB

Characteristics	$\begin{array}{c} \textbf{min.} \\ \textbf{for } \textit{T}_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{SPEC}} \end{array}$	
1850 1915 MHz	30	40	_	dB
1880 1920 MHz	30	40	_	dB
1920 1990 MHz	27	34	_	dB
1930 1995 MHz	27	34	_	dB
2010 2025 MHz	24	30	_	dB
2110 2170 MHz	16	23	_	dB
2110 2200 MHz	13	20	_	dB
2300 2400 MHz	9	14	_	dB
3300 3800 MHz	15	19	_	dB
3800 4200 MHz	23	29	_	dB
4400 4800 MHz	36	44	_	dB
4400 5000 MHz	36	44	_	dB
4800 4900 MHz	40	56	_	dB
4800 5000 MHz	40	56	_	dB
4992 5380 MHz	40	52	_	dB
5150 5850 MHz	40	52	_	dB
7488 8070 MHz	40	50	_	dB

See Sec. Matching circuit (p. 6).

²⁾ Over any channel with band width of 20 MHz.

³⁾ Over any channel with band width of 100 MHz.

⁴⁾ Average over each WLAN channel with band width of 19 MHz.

7 Maximum ratings

Storage temperature	T _{STG} ¹) = −40 °C +85 °C	
DC voltage	$ V_{DC} = 5.0 \text{ V (max.)}$	
ESD voltage		
	$V_{\rm ESD}^{2)} = 300 \text{V (max.)}$	Charged device model.
	$V_{\rm ESD}^{3)} = 500 \text{V (max.)}$	Human body model.
	$V_{\rm ESD}^{4)} = 100 \text{V (max.)}$	Machine model.
Input power	P _{IN}	
@ input port: 2496 2690 MHz	32 dBm	■ 5 MHz TD-LTE uplink signal 1 RB, duty cycle 50% for 5000 h @ 50 °C.
		■ 10 MHz 5G-NR (CP-OFDM) 1RB, duty cycle 50% for 5000 h @ 50 °C.

Not valid for packaging material. Storage temperature for packaging material is −25 °C to +40 °C.

²⁾ According to JESD22-C101C (CDM – Field Induced Charged Device Model), 3 negative & 3 positive pulses.

³⁾ According to JESD22-A114F (HBM – Human Body Model), 1 negative & 1 positive pulse.

⁴⁾ According to JESD22-A115B (MM – Machine Model), 10 negative & 10 positive pulses.

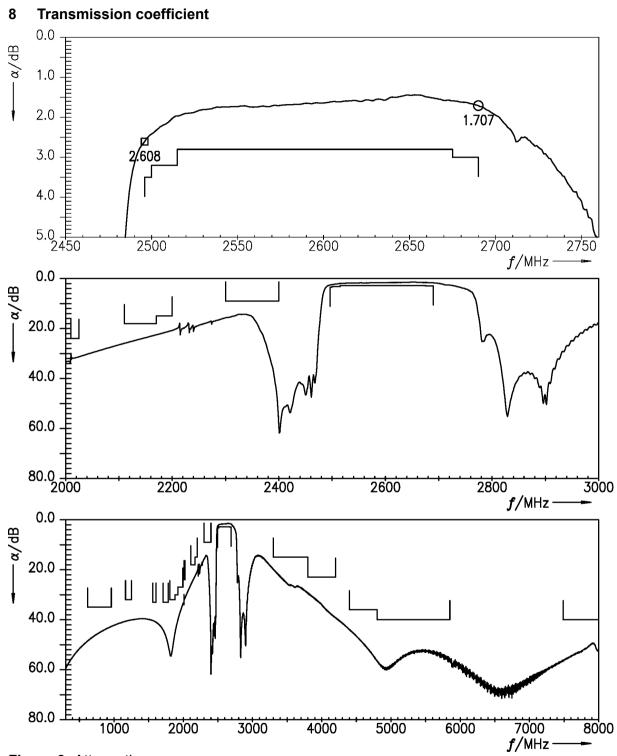
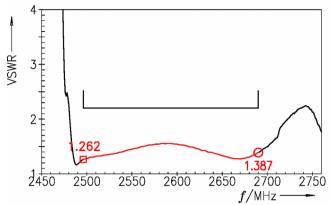



Figure 3: Attenuation.

9 Reflection coefficients

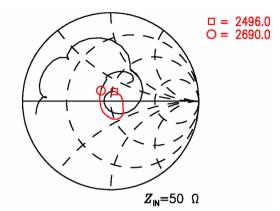
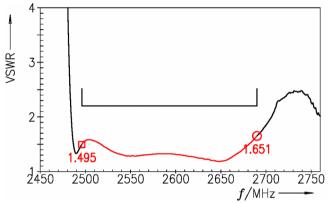



Figure 4: Reflection coefficient at input port.

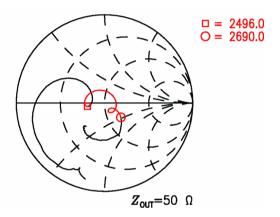
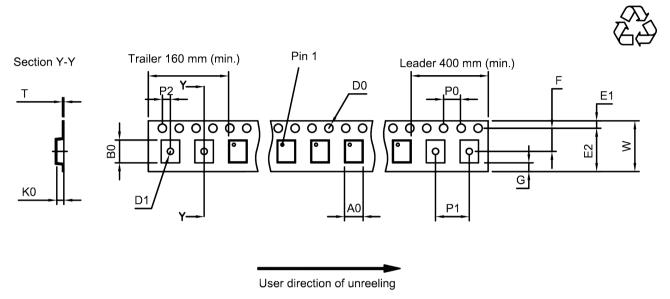



Figure 5: Reflection coefficient at output port.

10 Packing material

10.1 Tape

Figure 6: Drawing of tape (first-angle projection) for illustration only and not to scale. The valid tape dimensions are listed in Table 1.

A ₀	1.25±0.05 mm	E	6.25 mm (min.)	P ₁	4.0±0.1 mm
B ₀	1.55±0.05 mm	F	3.5 _{±0.05} mm	P_2	2.0±0.05 mm
D_0	1.5+0.1/-0 mm	G	0.75 mm (min.)	Т	0.25±0.03 mm
D ₁	0.5±0.05 mm	K	0.71±0.04 mm	W	8.0+0.3/-0.1 mm
E ₁	1.75±0.1 mm	P	4.0±0.1 mm		

Table 1: Tape dimensions.

Europe GmbH

10.2 Reel with diameter of 180 mm

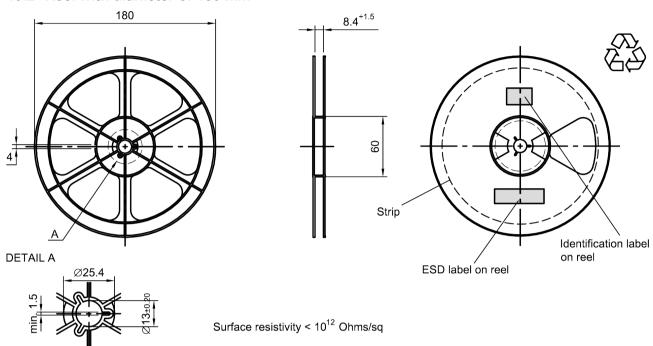


Figure 7: Drawing of reel (first-angle projection) with diameter of 180 mm.

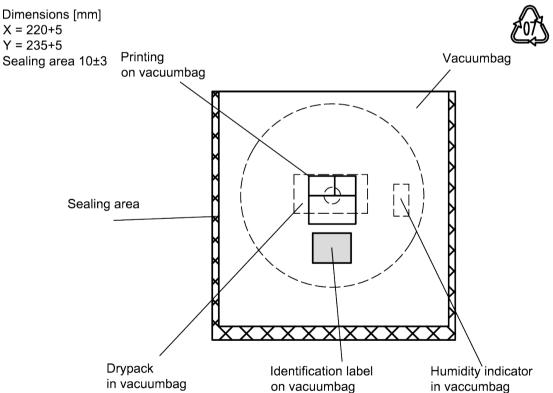


Figure 8: Drawing of moisture barrier bag (MBB) for reel with diameter of 180 mm.

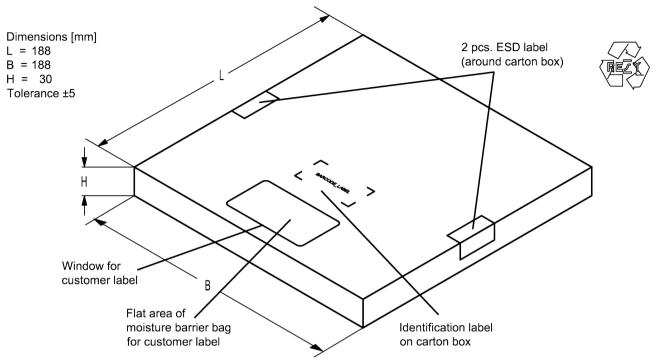
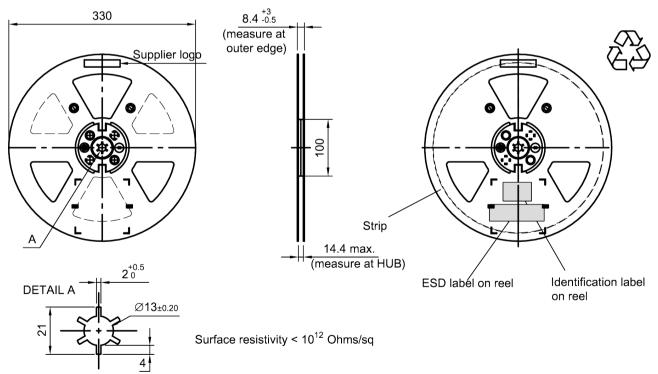



Figure 9: Drawing of folding box for reel with diameter of 180 mm.

10.3 Reel with diameter of 330 mm

Figure 10: Drawing of reel (first-angle projection) with diameter of 330 mm.

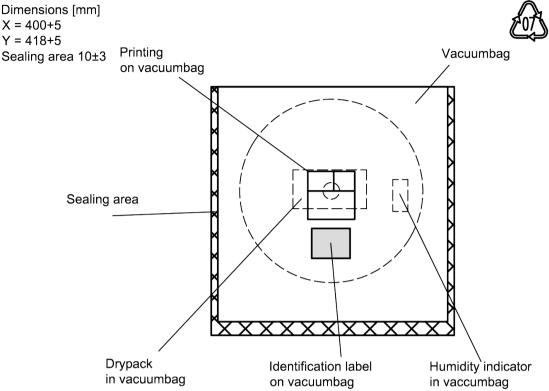


Figure 11: Drawing of moisture barrier bag (MBB) for reel with diameter of 330 mm.

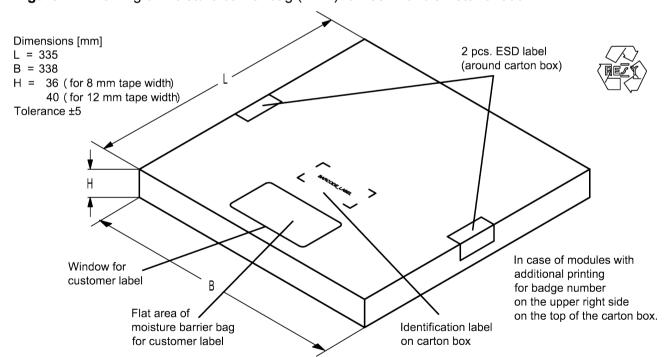


Figure 12: Drawing of folding box for reel with diameter of 330 mm.

11 Marking

Europe GmbH

Products are marked with product type number and lot number encoded according to Table 2:

■ Type number:

The 4 digit type number of the ordering code, e.g., B3xxxxB1234xxxx, is encoded by a special BASE32 code into a 3 digit marking.

Example of decoding type number marking on device in decimal code.

16J => 1234 1 x 32^2 + 6 x 32^1 + 18 (=J) x 32^0 = 1234

The BASE32 code for product type B8373 is 85N.

■ Lot number:

The last 5 digits of the lot number, e.g., are encoded based on a special BASE47 code into a 3 digit marking.

Example of decoding lot number marking on device in decimal code.

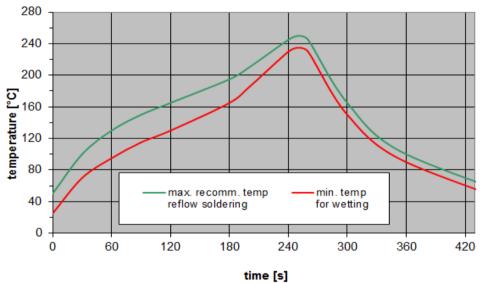
5UY => 12345

 $5 \times 47^2 + 27 (=U) \times 47^1 + 31 (=Y) \times 47^0 = 12345$

Adopted BASE32 code for type number						
Decimal	Base32	Decimal	Base32			
value	code	value	code			
0	0	16	G			
1	1	17	Н			
2	2	18	J			
3	3	19	K			
4	4	20	М			
5	5	21	N			
6	6	22	Р			
7	7	23	Q			
8	8	24	R			
9	9	25	S			
10	Α	26	Т			
11	В	27	V			
12	С	28	W			
13	D	29	Х			
14	E	30	Y			
15	F	31	Z			

Adopted BASE47 code for lot number						
Decimal	Base47	Decimal	Base47			
value	code	value	code			
0	0	24	R			
1	1	25	S			
2	2	26	Т			
3	3	27	U			
4	4	28	V			
5	5	29	W			
6	6	30	X			
7	7	31	Y			
8	8	32	Z			
9	9	33	b			
10	Α	34	d			
11	В	35	f			
12	C	36	h			
13	D	37	n			
14	E	38	r			
15	F	39	t			
16	G	40	V			
17	Н	41	\			
18	J	42	?			
19	K	43	{			
20	L	44	}			
21	М	45	<			
22	N	46	>			
23	Р					

Table 2: Lists for encoding and decoding of marking.



12 Soldering profile

The recommended soldering process is in accordance with IEC $60068-2-58-3^{rd}$ edit and IPC/JEDEC J-STD-020B.

ramp rate	≤ 3 K/s
preheat	125 °C to 220 °C, 150 s to 210 s, 0.4 K/s to 1.0 K/s
T > 220 °C	30 s to 70 s
T > 230 °C	min. 10 s
T > 245 °C	max. 20 s
<i>T</i> ≥ 255 °C	-
peak temperature T_{peak}	250 °C +0/-5 °C
wetting temperature T _{min}	230 °C +5/-0 °C for 10 s ± 1 s
cooling rate	≤ 3 K/s
soldering temperature T	measured at solder pads
-	1

Table 3: Characteristics of recommended soldering profile for lead-free solder (Sn95.5Ag3.8Cu0.7).

Figure 13: Recommended reflow profile for convection and infrared soldering – lead-free solder.

13 Annotations

13.1 RoHS compatibility

ROHS-compatible means that products are compatible with the requirements according to Art. 4 (substance restrictions) of Directive 2011/65/EU of the European Parliament and of the Council of June 8th, 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment ("Directive") with due regard to the application of exemptions as per Annex III of the Directive in certain cases.

13.2 Scattering parameters (S-parameters)

The pin/port assignment is available in the headers of the S-parameter files. Please contact your local RF360 sales office.

13.3 Ordering codes, product IDs, labels, and packing units

Ordering code	Product ID	RF360 label	Packing unit
D20262D0272L240	B39262-B8373-L210-S05	B39262B8373L210S 5	5000 pcs
B39262B8373L210	B39262-B8373-L210-W05	B39262B8373L210W 5	5000 pcs

Table 4: Ordering codes / product IDs and packing units. Shipment will come from either Singapore or Wuxi location.

14 Cautions and warnings

14.1 Display of ordering codes for RF360 products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of RF360, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under https://rffe.gualcomm.com/.

14.2 Material information

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

For information on recycling of tapes and reels please contact one of our sales offices.

14.3 Moldability

Before using in overmolding environment, please contact your local RF360 sales office.

14.4 Package information

Landing area

The printed circuit board (PCB) land pattern (landing area) shown is based on RF360 internal development and empirical data and illustrated for example purposes, only. As customers' SMD assembly processes may have a plenty of variants and influence factors which are not under control or knowledge of RF360, additional careful process development on customer side is necessary and strongly recommended in order to achieve best soldering results tailored to the particular customer needs.

Dimensions

Unless otherwise specified all dimensions are understood using unit millimeter (mm).

Projection method

Unless otherwise specified first-angle projection is applied.

15 Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, RF360 Europe GmbH and its affiliates are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an RF360 product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (https://rffe.qualcomm.com). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.

The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

单击下面可查看定价,库存,交付和生命周期等信息

>>Qualcomm-RF360