

18V/3A Synchronous BUCK Switching Converter

Features

- Wide input voltage range: 4.2V 18V
- Output voltage range: V_{ref} − 7V
- High efficiency operation
 - Integrated an 33-m Ω LS-MOSFET and an 55-m Ω HS-MOSFET
 - 92% efficiency at 3A load from 12V to 5V conversion
- Constant-on time (COT) control with fast transient response.
- ±1% Vref accuracy
- Typical 1.2-MHz switching frequency
- Startup from Pre-biased output voltage
- 1.0ms typical soft-start time
- Integrated UVLO, OVP, OCP, SCP, and OTP protections
- 1.6mm X 2.9mm SOT23-6 package and 1.6mm X 1.6mm SOT563 package
- RoHS Compliant and 100% Lead (Pb) Free

Applications

- Industrial PC
- Network/digital video recorder (NVR/DVR)
- TV and TV box
- 12V Industrial bus applications

General Description

The LP6453X is a high efficiency synchronous buck converter supporting up to 3A output current and low heat. The LP6453X employs an adaptive constant-on-time (COT) control scheme to achieve fast load transient response and without external compensation. The external components are minimized, requiring only one inductor, two resistors, and two capacitors.

The LP6453X supports both aluminum polymer capacitors and ceramic capacitors without extra compensation components.

The LP6453/LP6453T/LP6453A integrates PFM (Pulse Frequency Modulation) operation, which helps maintain the system efficiency at light load. The LP6453AF integrates FPWM (Forced PWM) operation, which helps achieve very small output ripple over all load range. The LP6453X also integrates multiple protection functions, i.e., over-current protection (OCP), over-temperature protection (OTP), under-voltage lockout (UVLO), and short circuit protection (SCP).

The LP6453X is available in a small 6-pin 1.6mmX2.9mm SOT23-6 package or 1.6mmX1.6mm SOT563 package.

Order Information

Typical Application Circuit

Version: 12/12/2022 www.lowpowersemi.com email: marketing@lowpowersemi.com 1 / 19

Device Information

Part Number	Top Marking	Operation Mode	V _{ref}	Package	Shipping	MSL
LP6453B6F	LPS AbYWX	PFM	0.768V	SOT23-6	3K/REEL	LEVEL 3
LP6453TB6F	LPS ATYWX	PFM	0.6V	SOT23-6	3K/REEL	LEVEL 3
LP6453AG6F	AbWX	PFM	0.8V	SOT563	3K/REEL	LEVEL 3
LP6453AFG6F	ARWX	FPWM	0.6V	SOT563	3K/REEL	LEVEL 3

Marking indication: Y: Year code. W: Week code. X: Batch numbers. MSL: Moisture Sensitivity Level according to JEDEC Standard.

Pin Diagram

LP6453X Pinout

Pin Description

Pin # SOT23-6	Pin # SOT563	Name	Description
1	3	GND	Power ground of the IC
2	2	SW	The switching node of the converter.
3	1	VIN	IC power supply input.
4	6	FB	Feedback pin. Use a resistor divider to set the desired output voltage
5	5	EN	Enable input. This pin can be used to control the system power sequence as well
6	4	BST	Bootstrap pin. Power supply for high-side MOSFET gate driver. A 0.1- µF capacitor must be connected between this pin and SW pin.

Absolute Maximum Ratings (Note)

VIN, SW, and EN to GND	0.3V to 18V
FB to GND	0.3V to 6.5V
BST to SW	0.3V to 6.5V
SW to GND (5ns transient)	3.5V to 20V
Operating Ambient Temperature Range (TA)	40°C to 85°C
Maximum Soldering Temperature (at leads, 10 sec)	260°C

Note: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device

ESD Ratings

HBM (Human Body Model)		2kV
CDM (Charged-device Mode	el) 50	V00

Thermal Information

θ _{JA} (Junction-to-Ambient Thermal Resistance, SOT23-6)	100°C/W
θ _{JA} (Junction-to-Ambient Thermal Resistance, SOT563)	140°C/W

Recommended Operating Conditions

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
V _{IN}	Input voltage	4.2		18	٧
V_{OUT}	Output voltage	V_{ref}		7	V
L	Inductor	1		4.7	μH
T_A	Ambient temperature range	-40		85	°C
C _{IN}	Input decoupling capacitor	4.7	·	100	μF
C _{OUT}	Output capacitor	10		100	μF

Electrical Characteristics

Version: 12/12/2022

(The specifications are measured under conditions V_{IN} = 12V, T_A = 25°C, unless otherwise specified.)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
INPUT SEC	CTION					
V _{ULVO_R}	Input under voltage lockout threshold	V _{IN} rising threshold	3.8	4.0	4.2	V
V _{ULVO_H}	UVLO hysteresis	V _{IN} falling threshold		0.3		V
I _{q_VIN}	Input quiescent current	No switching, EN=3V, FB=1.0V		440	550	μΑ
I _{sd_VIN}	Input shutdown current	EN=0, V _{IN} =12V		1.5	5	μΑ
BUCK COI	BUCK CONVERTER					
ILIM	Low-side valley current limit	T _A =25°C	3.5	4.2	4.8	А

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		T _A =25°C, LP6453	0.76	0.768	0.776	V
		T _J =-40 °C ~125°C, LP6453	0.753		0.783	V
	Reference	T _A =25°C, LP6453T, LP6453AF	0.594	0.6	0.606	V
V _{ref}	voltage	T _J =-40 °C ~125°C, LP6453T, LP6453AF	0.588		0.612	V
		T _A =25°C, LP6453A	0.792	0.8	0.808	V
		T _J =-40 °C ~125°C, LP6453A	0.784		0.816	V
R _{dson_HS}	High-side FET on resistance	V _{IN} =12V		55		mΩ
R _{dson_LS}	Low-side FET on resistance	V _{IN} =12V		33		mΩ
F _{sw}	Switching frequency			1200		kHz
ton-min	Minimum on- time ^[1]			50		ns
t _{off-min}	Minimum off- time ^[1]	V _{FB} =V _{ref} - 0.2V		100		ns
t _d	EN delay time ^[1]	From EN high to first switching		500		μs
t _{ss}	Soft-start time ^[1]	From first switching to 95%Vref		750		μ s
T _{jsd}	Thermal shutdown threshold	Rising threshold		160		°C
	Thermal shutdown threshold	Falling threshold		135		°C
I _{leak_FB}	FB pin leakage current			0.01		μ A
EN Logic						
V _H	EN pin logic high threshold	EN Rising threshold	1.14	1.2	1.26	V
V _{hys}	EN pin threshold hysteresis			0.2		V
	EN pin internal pull-down resistance			900		kΩ

^{[1]:} Not production tested. Guaranteed by design

Version: 12/12/2022

Typical Characteristics

Figure 1. Switching Frequency VS. Output Current, LP6453T

Figure 3. Efficiency, VOUT=5.0V, L=2.2 μ H, LP6453T

Figure 2. Switching Frequency VS. Output Current, LP6453AF

Figure 4. Efficiency, VOUT=3.3V, L=2.2 μ H, LP6453T

Version: 12/12/2022 www.lowpowersemi.com email: marketing@lowpowersemi.com 6 / 19

Figure 5. Efficiency, VOUT=1.2V, L=1u μ H, LP6453T

Figure 7. Efficiency, VOUT=3.3V,L=2.2 μ H,LP6453AF

Figure 6. Efficiency, VOUT=5.0V,L=2.2µH,LP6453AF

Figure 8. Efficiency, VOUT=1.2V,L=1 μ H,LP6453AF

Version: 12/12/2022 www.lowpowersemi.com email: marketing@lowpowersemi.com 7 / 19

Output voltage VS. lout with different VIN

VOUT=3.3V

Figure 9. VOUT=5V, Regulation, L=2.2µH, LP6453T

Figure 10. VOUT=3.3V,Regulation,L=2.2µH, LP6453T

Figure 11. VOUT=1.2V, Regulation, L=1µH, LP6453T

Figure 12. Reference voltage VS. Junction Temperature, LP6453T

Version: 12/12/2022 www.lowpowersemi.com email: marketing@lowpowersemi.com 8 / 19

Functional Block Diagram

Detailed Description

Overview

The LP6453X is a 3A integrated MOSFET synchronous buck converter, supporting 4.2-18V input voltage range. This device adopts adaptive COT control scheme which enables fast transient respond and minimizes the output capacitance. The LP6453X supports both aluminum polymer capacitors and low-ESR ceramic capacitors without external compensation circuit. The LP6453X automatically transfers between PFM at light load and PWM at heavy load according to the output current.

Under Voltage Lockout (UVLO)

When the input voltage VIN is lower than the UVLO threshold, all functions are shut down. When the input voltage is higher than the UVLO rising threshold, the LP6453X can be enabled by the EN pin. This function is non-latching.

EN Control and Soft-start

The EN pin can be used to control the system power-up sequence. A precise voltage reference is used as the threshold. When the VIN is above the UVLO threshold and EN voltage rises above the EN pin logic high threshold (1.2V typically), the LP6453X enables all the internal circuits and begins the soft-start. The EN pin has an internal $900k\Omega$ pull-down resistor to ground.

The LP6453X integrates soft-start function with a typical startup time of 0.75ms (t_{ss}). After passing the UVLO threshold and enabled by the EN pin with the 500us delay(t_d), the internal reference voltage ramps from zero to the Vref in 0.75ms and the output voltage ramps up accordingly.

Figure 13. Soft Start Sequence

If the output capacitor is pre-biased at startup, the device initiates switching and starts ramping up only after the internal reference voltage becomes higher than the feedback voltage.

Constant-ON Time (COT) Control Scheme

The LP6453X integrates the COT control scheme for pseudo-fixed- frequency operation when operating in continuous conduction mode (CCM). Refer to the Functional Block Diagram for better understanding of the operation. The internal on-time generator block monitors the FB-pin voltage and turns on the high-side MOSFET to start a switching cycle, when the FB-pin voltage drops to an internal reference voltage Vref. Then the internal circuits start to calculate the on-time of the high-side MOSFET, which is proportional to the input voltage and inversely proportional to the output voltage. Once the on-time is finished, the TOFF generator turns off the high-side MOSFET and turns on the low-side MOSFET.

PFM Operation (LP6453, LP6453T, LP6453A)

The LP6453X is designed to maintain high efficiency at light load by adopting pulse-frequency modulation (PFM). In the PFM, the switching cycle is still initiated by the TON generator monitoring the FB-pin voltage. The high-side MOSFET is turned on for TON time and then turned off, followed by turning on the low-side MOSFET. The inductor current falls when the low-side MOSFET is on. When the inductor current reaches zero, detected by the zero-current detection (ZCD) comparator, the low-side MOSFET is turned off, together with the high-side MOSFET. Both MOSFETs remains off until a new switching cycle begins, determined by TON generator. As the load current decreases, the duration for both MOSFETs to remain off increases, leading to a lower switching frequency and higher power efficiency.

FPWM Operation (LP6453AF)

The LP6453AF is designed to work at FPWM to maintain the good regulation and transient performance. When the output decreases, the inductor is allowed to flow from the output to the ground plane. In this way, the switching frequency

Version: 12/12/2022 www.lowpowersemi.com email: marketing@lowpowersemi.com 10 / 19

is kept the same even without load.

The FPWM operation mode reduced the output ripple under light load at the cost of lower light load efficiency.

Bootstrap Capacitor

The LP6453X integrates two N-MOSFET to achieve high efficiency. The high-side MOSFET is powered by the bootstrap capacitor C_{BST}, which is between the BST pin and SW pin.

Over Current Protection and Short Circuit Protection (SCP)

The LP6453X protects an over current situation by limiting the inductor valley current. The current of low-side MOSFET is monitored all the time to sense the inductor valley current when the LP6453X is enabled. The high-side MOSFET cannot be turned on if the valley current is higher than the low-side valley current limit. The inductor current is limited to the valley current limit pluses a half of the inductor ripple current in this way.

The SCP is realized by monitoring the FB-pin voltage when the inductor current is limited. Once the output load draws more current than the current limit, the output voltage drops. When the FB voltage drops to 50% of the Vref for 1.5-ms, the LP6453X shuts down. The LP6453X will restart automatically after at least 500us waiting time. If the SCP condition still holds after soft-start, the LP6453X shutdown again, repeating the operation described above.

When the over current condition is removed, the output voltage returns to normal operation.

Thermal Protection

The LP6453X has a thermal protection function. The device will shut down when the internal temperature is higher than 160°C and will restart after the temperature drops below 135°C.

Version: 12/12/2022 www.lowpowersemi.com email: marketing@lowpowersemi.com 11 / 19

Application Information

Design Requirements

The table 1 showes the design parameters for a typical 5V output voltage in the IPC application.

Table 1 Design Parameters

Parameter	Target
Input voltage range	9~15V
Output voltage	5V
Transient ripple	±200mV
Operating frequency	1200kHz

Figure 14. Typical schematic

Output Voltage Setting

The output voltage can be programmed by adjusting the external resistor divider RUP and RDOWN according to the equation below:

$$V_{OUT} = \left(\frac{R_{UP}}{R_{DOWN}} + 1\right) * V_{ref}$$

When the output voltage is in regulation, the typical voltage at FB pin is 0.6V for LP6453T.

For better accuracy, the R_{DOWN} is recommended to be lower than 100kΩ to ensure the current flowing through R_{DOWN} is at least 100 times larger than the FB pin leakage current.

For a 5V-output application, a $10k\Omega$ R_{DOWN} is selected and the R_{UP} is $73.2k\Omega$.

A resistor with higher than $1k\Omega$ but lower than $100k\Omega$ should be placed between the resistor divider and FB pin if a C_{ff} capacitor is soldered.

Figure 15. FB connection

Version: 12/12/2022 www.lowpowersemi.com email: marketing@lowpowersemi.com

EN Design

The LP6453X allows the user to design a precise VIN voltage to enable the converter during power on. The startup sequence can be designed by adjusting the resistor divider of Ruplen and Rdown_en with the equation below,

$$V_{EN} = \frac{900 \text{k}\Omega//\text{R}_{DOWN_EN}}{\text{R}_{UP_EN} + 900 \text{k}\Omega//\text{R}_{DOWN_EN}} * VIN$$

where V_{EN} is the EN rising threshold voltage at which the converter is enabled, which is 1.2V typically. A 47pF-1nF capacitor is recommend to be soldered in parallel with the R_{EN_DOWN} to avoid the high-frequency noise influence from the switching node.

Figure 16. EN connection

Inductor and Output Capacitor Setting

The inductor ripple is calculated by the equation below:

$$I_{PP} = \left(\frac{V_{OUT}}{L*Fsw} * \frac{V_{IN} - V_{OUT}}{V_{IN}} \right)$$

To get a better efficiency, the inductor ripple is recommended to be controlled under 40% of the output current to minimize the AC loss of the inductor and power MOSFETs.

For a typical 12V input voltage and 5V output voltage, a low DCR value, 2.2-µH inductor is recommended.

The output capacitor not only impacts the output ripple but also the loop stability. Please follow the design rules in the table below. A feedforward capacitor C_{FF} can be selected to improve the transient behavior. The typical capacitance can be 10-100pF. For this design, three 6.3V, X5R, 22 μ F capacitors (GRM188R60J226ME15) from Murata are soldered at the VOUT to GND.

Table 2 Recommend R/L/C values

Vout	Inductor-L	Cout	R_{UP}	R_{DOWN}	Roption	C_{ff}
1.2V	1μH/1.2μH	22µF*2	10 k Ω	10 k Ω	0 Ω	NA
3.3V	1.5µH/2.2µH	22µF*2	45 k Ω	10 k Ω	10 k Ω	10-100pF
5.0V	2.2µH/3.3µH	22µF*3	73.3 kΩ	10 k Ω	10 k Ω	10-100pF

Bootstrap capacitor

A 0.1-µF ceramic capacitor is needed to supply power for the high-side N-MOSFET driver. The capacitor should be at least 10V.

Input capacitor

A typical 22- μ F ceramic capacitor is needed to serve as the bulk capacitor at the VIN pin of the LP6453X. An additional 0.1 μ F is strongly recommended to provide additional high frequency filtering and should be placed to the VIN pin and GND as close as possible.

Version: 12/12/2022 www.lowpowersemi.com email: marketing@lowpowersemi.com

Figure 17. Startup by VIN, 50Ω load

Figure 19. Startup by EN, 50Ω load

Figure 21. Switching Waveform, 0A load

Figure 20. Shutdown by EN, 50Ω load

Figure 22. Switching Waveform, 250mA load

Version: 12/12/2022 www.lowpowersemi.com email: marketing@lowpowersemi.com 14 / 19

Figure 27. SCP Recovery, VIN=12V, VOUT=5V, 1A Figure 28. Output SCP, VIN=12V, VOUT=5V, 1A load

PCB Layout Guidelines

Version: 12/12/2022 www.lowpowersemi.com email: marketing@lowpowersemi.com

Version: 12/12/2022

Proper layout of the components to minimize high frequency current path loop is important to prevent electrical and magnetic field radiation and high frequency resonant problems. Follow this specific order carefully to achieve the proper layout.

- Place input capacitor (C2 and C4) as close as possible to VIN pin and GND pin and use shortest copper trace connection or GND plane.
- Put output capacitor near to the inductor output terminal and the device. Ground connections need to be tied to the IC ground with a short copper trace or GND plane
- Place inductor input terminal to SW pin as close as possible and limit SW node copper area to lower electrical and magnetic field radiation. Do not use multiple layers in parallel for this connection. Minimize parasitic capacitance from this area to any other trace or plane.
- R1 is reserved to slow down the switching speed for noise sensitive applications and R3 with higher than 1kΩ resistor should be soldered if the feedforward capacitor is soldered at the same time.

Figure 29 Layout example (SOT23-6 package)

Figure 30 Layout example (SOT563 package)

email: marketing@lowpowersemi.com 16 / 19

www.lowpowersemi.com

Packaging Information

1.6mm x2.9mm SOT23-6 package

Recommended Land Pattern

SYMBOL	MILLIMETER				
STIVIDOL	MIN	NOM	MAX		
Α	0.889	1.100	1.295		
A1	0.000	0.050	0.152		
В	1.397	1.600	1.803		
b	0.28	0.35	0.559		
С	2.591	2.800	3.000		
D	2.692	2.920	3.120		
е	e 0.95BSC				
Н	0.080	0.152	0.254		
L	0.300	0.450	0.610		

1.6mm x1.6mm SOT563 package

Version: 12/12/2022

OVADOL	MILLIMETER				
SYMBOL	MIN	NOM	MAX		
Α	0.53		0.60		
A1	0.00		0.05		
b	0.19		0.27		
b1	0.18	0.20	0.23		
С	0.11		0.16		
c1	0.10	0.11	0.12		
D	1.50	1.60	1.70		
E	1.503	1.60	1.70		
E1	1.10	1.20	1.30		
е	0.50BSC				
L	0.10	0.20	0.30		
L1	0.20	0.30	0.40		
L1	0.20	0.30	0.40		

email: marketing@lowpowersemi.com

Revision History

Revision	Date	Change Description
Rev 1p0	6/1/2022	Initial release
Rev 1p1	9/1/2022	Add SE transient specification
Rev 1p2	12/12/2022	New Format

Version: 12/12/2022 www.lowpowersemi.com email: marketing@lowpowersemi.com 19 / 19

单击下面可查看定价,库存,交付和生命周期等信息

>>LOW POWER(微源半导体)