

Features

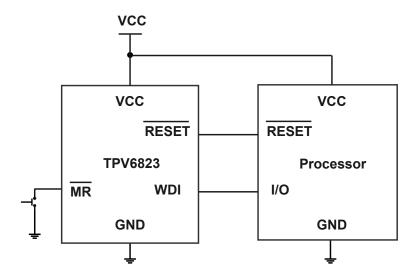
- Precision Low Voltage Monitoring
- · 200-ms (typical) Reset Timeout
- Watchdog Timer with 1.6-sec Timeout
- Manual Reset Input
- · Reset Output Stage
- Push-Pull Active-Low
- Low-Power Consumption: 2.2 μA
- Guaranteed Reset Output valid to V_{CC} = 1 V
- · Power Supply Glitch Immunity
- Specified from -40°C to +125°C
- SOT23-5 Package

Applications

- Microprocessor Systems
- Computers
- Controllers
- · Intelligent Instruments
- Portable Equipment

Description

The TPV6823 is a supervisory circuit that monitors power supply voltage levels and provides a power-on reset signal.


It also has an on-chip watchdog timer, which can give out a reset signal if the microprocessor fails to strobe the watchdog timer within a preset timeout period.

A reset signal can also be asserted by an external manual reset input.

The reset and watchdog timeout periods are fixed at 200 ms (typical) and 1.6 sec (typical) respectively.

The TPV6823 is available in a SOT23-5 package and typically consumes only 2.2 μ A, suitable for use in low-power and portable applications.

Typical Application Circuit

Table of Contents

Features	1
Applications	1
Description	1
Typical Application Circuit	1
Product Family Table	3
Revision History	3
Pin Configuration and Functions	4
Specifications	5
Absolute Maximum Ratings	5
ESD, Electrostatic Discharge Protection	5
Thermal Information	5
Electrical Characteristics	6
Typical Performance Characteristics	8
Typical Performance Characteristics (continued)	9
Detailed Description	10
Overview	10
Functional Block Diagram	10
Feature Description	11
Application and Implementation	12
Application Information	12
Typical Application	12
Tape and Reel Information	13
Package Outline Dimensions	14
SOT23-5	14
Order Information	15
IMPORTANT NOTICE AND DISCLAIMER	16

Product Family Table

Order Number	Threshold Voltage (V)	Marking Information	Package
TPV6823V-TR	1.58	V1V	SOT23-5
TPV6823W-TR (1)	1.67	V1W	SOT23-5
TPV6823Y-TR	2.19	V1Y	SOT23-5
TPV6823Z-TR (1)	2.32	V1Z	SOT23-5
TPV6823R-TR	2.63	V1R	SOT23-5
TPV6823S-TR	2.93	V1S	SOT23-5
TPV6823T-TR (1)	3.08	V1T	SOT23-5
TPV6823M-TR (1)	4.38	V1M	SOT23-5
TPV6823L-TR (1)	4.63	V1L	SOT23-5

⁽¹⁾ For future products, contact the 3PEAK factory for more information and samples.

Revision History

Date	Revision	Notes
2018-12-10	Rev.A.0	First release version.
2019-04-15	Rev.A.1	Updated package POD information.
2019-05-28	Rev.A.2	Added WDI pulse interval spec.
2021-08-26	Rev.A.3	Updated Format and added Application Note.
2021-11-22	Rev.A.4	Corrected POD.
2023-10-09	Rev.A.5	 Updated datasheet format. Added note in Product family table. Corrected I_{CC} max(@VCC=5 V) to 25 µA, V_{TH} max value of TPV6823Y to 2.28 V. Updated reset timing diagram. Removed power up/down restriction.

Pin Configuration and Functions

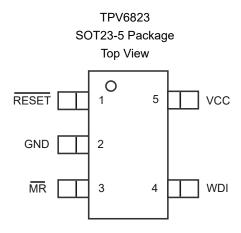


Table 1. Pin Functions: TPV6823

Р	in	1/0	December 1997
NO.	Name	I/O	Description
1	RESET	0	Active-Low Reset Push-Pull Output Stage. Asserted whenever V_{CC} is below the reset threshold, V_{TH} .
2	GND	-	Ground.
3	MR	I	Manual Reset Input. This is an active-low input, which, when forced low for at least 1 μ s, generates a reset. It features a 50-k Ω internal pull-up.
4	WDI	I	Watchdog Input. The watchdog input generates a reset if the voltage on the pin remains low or high for the duration of the watchdog timeout. The timer is cleared if a logic transition occurs on this pin or if a reset is generated.
5	VCC	_	Power Supply Voltage Monitored.

Specifications

Absolute Maximum Ratings

	Parameter	Min	Max	Unit
Input Voltage	vcc	-0.3	6	V
Output Current	RESET		20	mA
TJ	Maximum Junction Temperature	-40	125	°C
T _{STG}	Storage Temperature Range	-65	150	°C
TL	Lead Temperature (Soldering 10 sec)		260	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

ESD, Electrostatic Discharge Protection

	Parameter	Condition	Minimum Level	Unit
HBM	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001 (1)	4	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002 (2)	2	kV

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Thermal Information

Package Type	θυΑ	θυς	Unit
SOT23-5	128	67	°C/W

⁽²⁾ This data was taken with the JEDEC low effective thermal conductivity test board.

⁽³⁾ This data was taken with the JEDEC standard multilayer test boards.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Electrical Characteristics

All test conditions: V_{CC} = 1.53 V to 5.5 V, T_A = -40°C to +125°C, unless otherwise noted.

Parameter			Conditions	Min	Тур	Max	Unit
Supply \	Voltage and Current						
Vcc	VCC Operating Voltage Rai	nge		1		5.5	V
	Supply Current		WDI and MR unconnected (VCC = 1.8 V)		2.2	10	μA
Icc			WDI and MR unconnected (VCC = 5 V)		6	25	μA
		TPV6823V		1.51	1.58	1.63	V
		TPV6823W		1.62	1.67	1.71	V
		TPV6823Y		2.12	2.19	2.28	V
		TPV6823Z		2.25	2.32	2.38	V
V_{TH}	Reset Threshold Voltage	TPV6823R		2.55	2.63	2.70	V
		TPV6823S		2.85	2.93	3.00	V
		TPV6823T		3.00	3.08	3.15	V
		TPV6823M		4.25	4.38	4.5	V
		TPV6823L		4.5	4.63	4.75	V
	Reset Threshold Temperature Coefficient				60		ppm/°
V _{HYS}	Reset Threshold Hysteresis				$2 \times \frac{V_{TH}}{1000}$		mV
t _{RD}	VCC To Reset Delay		V _{TH} – V _{CC} = 100 mV		20		μs
t _{RP}	Reset Timeout Period			140	200	280	ms
VoL	Reset Output Voltage Low (Push-Pull)	V _{CC} ≥ 1 V, I _{SINK} = 50 μA			0.3	V
V _{OH}	Reset Output Voltage High Only)	(Push-Pull	V _{CC} ≥ 1.8 V, I _{SOURCE} = 200 µA	0.8 × V _{CC}			V
MR Pin				-	1	l	
VIL_MR	Input Threshold Voltage Lov	w for \overline{MR}				0.3 × Vcc	V
V _{IH_MR}	Input Threshold Voltage High forMR			0.7 × V _{CC}			V
t _{PW_MR}	MR Input Pulse Width			1			μs
t _{GR_MR}	MR Glitch Rejection				100		ns
t _{d_MR}	MR to Reset Delay				200		ns
R _{PU_MR}	MR Pull-Up Resistance				50		kΩ
WDI Pin							
t_{WD}	Watchdog Timeout Period			1.12	1.6	2.4	s

	Parameter	Conditions	Min	Тур	Max	Unit
t _{PW_WD}	WDI Pulse Width 50 ns		50			ns
V _{IL_WD}	WDI Input Threshold VIL				0.3 × V _{CC}	V
V _{IH_WD}	WDI Input Threshold VIH		0.7 × Vcc			V
I _{WDI} WDI Input Current	WDI Input Current	$V_{WDI} = V_{CC}$		20		μΑ
	WDI Input Current	V _{WDI} = 0		-15		μA

Typical Performance Characteristics

All test conditions: $V_{CC} = 3.3 \text{ V}$, $T_A = +25 ^{\circ}\text{C}$, unless otherwise noted.

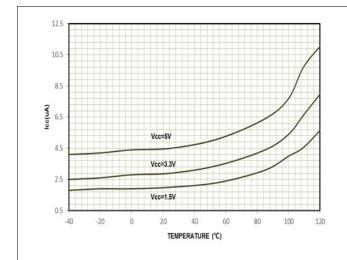


Figure 1. Supply Current vs. Temperature

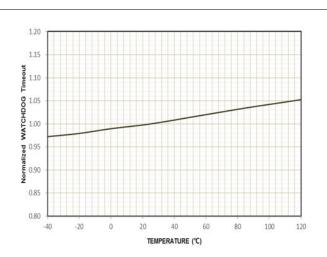


Figure 2. Normalized Watchdog Timeout Period vs.

Temperature

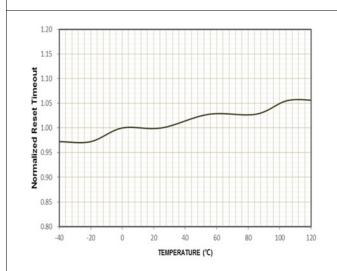


Figure 3. Normalized Reset Timeout Period vs.

Temperature

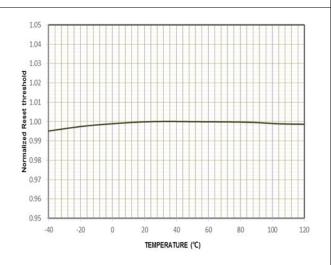


Figure 4. Normalized Reset Threshold vs Temperature

Typical Performance Characteristics (continued)

All test conditions: $V_{CC} = 3.3 \text{ V}$, $T_A = +25 ^{\circ}\text{C}$, unless otherwise noted.

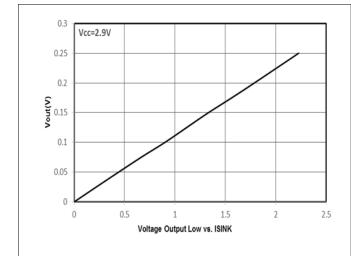


Figure 5. Voltage Output Low vs. Isink

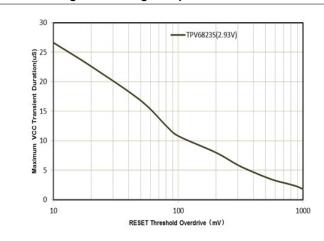


Figure 7. Maximum VCC Transient Duration vs. Reset
Threshold Overdrive

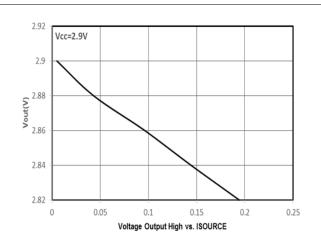


Figure 6. Voltage Output Low vs. ISOURCE

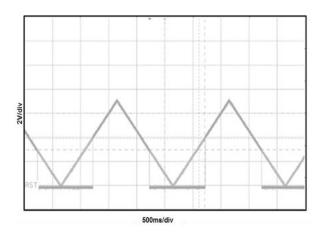


Figure 8. Reset Output Voltage vs Supply Voltage

Detailed Description

Overview

The TPV6823 provides supply voltage supervision as well as manual reset and watchdog functions.

A reset signal is asserted when the supply voltage is below a preset threshold. In addition, the TPV6823 allows supply voltage stabilization with a fixed timeout before the reset de-asserts after the supply voltage rises above the threshold.

A watchdog timer detects if the microprocessor code breaks down or becomes stuck in an infinite loop. If this happens, the watchdog timer asserts a reset pulse, which restarts the microprocessor in a known state.

A manual reset input is available to reset the microprocessor, for example, by using an external push-button.

Functional Block Diagram

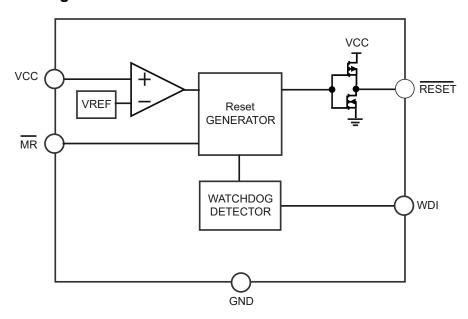


Figure 9. Functional Block Diagram

Feature Description

Reset Output

The TPV6823 features an active-low push-pull output. For active-low output, the reset signal is guaranteed to be logic low for V_{CC} down to 1 V. The reset output is asserted when V_{CC} is below the reset threshold (V_{TH}), when \overline{MR} is driven low, or when WDI is not serviced within the watchdog timeout period (t_{WD}). Reset remains asserted for the duration of the reset active timeout period (t_{RP}) after V_{CC} rises above the reset threshold, after \overline{MR} transitions from low to high, or after the watchdog timer times out. Figure 10 shows the reset outputs.

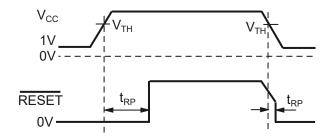


Figure 10. Reset Timing Diagram

Manual Reset Input

The TPV6823 features a manual reset input (\overline{MR}) , which, when driven low, asserts the reset output. When \overline{MR} transitions from low to high, reset remains asserted for the duration of the reset active timeout period before de-asserting.

The $\overline{\text{MR}}$ input has an internal pull-up resistor so that the input is always high when unconnected. Noise immunity is provided on the $\overline{\text{MR}}$ input, and fast, negative-going transients are ignored. A 0.1- μ F capacitor between $\overline{\text{MR}}$ and ground provides additional noise immunity.

Watchdog Input

The TPV6823 features a watchdog timer, which monitors microprocessor activity. A timer circuit is cleared with every low-to-high or high-to-low logic transition on the watchdog input pin (WDI). If the timer counts through the preset watchdog timeout period (twD), reset is asserted. The microprocessor is required to toggle the WDI pin to avoid being reset.

In addition to logic transitions on WDI, the watchdog timer is also cleared by a reset assertion due to an under-voltage condition on V_{CC} or \overline{MR} being pulled low. When reset is asserted, the watchdog timer is cleared and does not begin counting again until reset de-asserts. The watchdog timer can be disabled by leaving WDI floating or by three-stating the WDI driver.

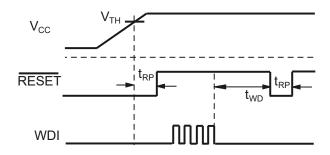


Figure 11. Watchdog Timing Diagram

Application and Implementation

Note

Information in the following application sections is not part of the 3PEAK's component specification and 3PEAK does not warrant its accuracy or completeness. 3PEAK's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Application Information

The TPV6823 is a supervisory circuit that monitors power supply voltage levels and provides a power-on reset signal.

It also has a on-chip watchdog timer, which can output a reset signal if the microporcessor fails to strobe the watchdog timer within a preset timeout period.

Typical Application

The following figure shows the typical application schematic.

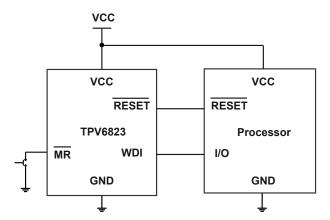
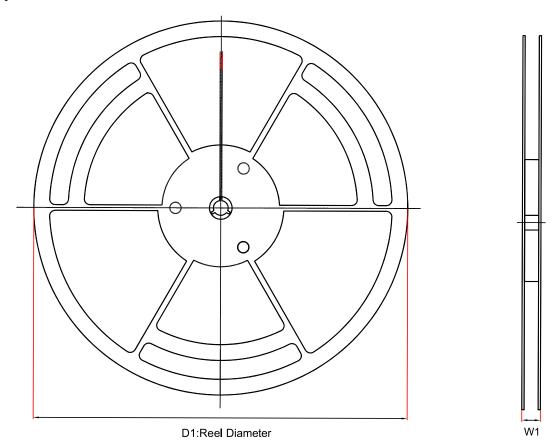
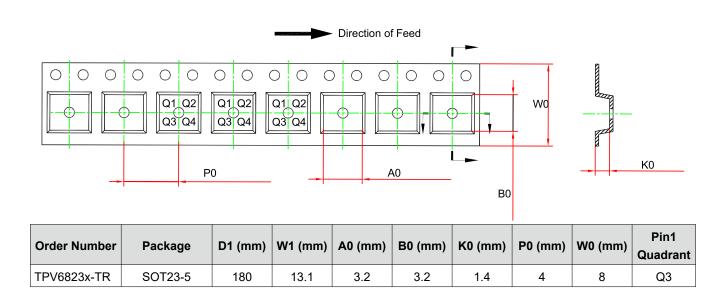
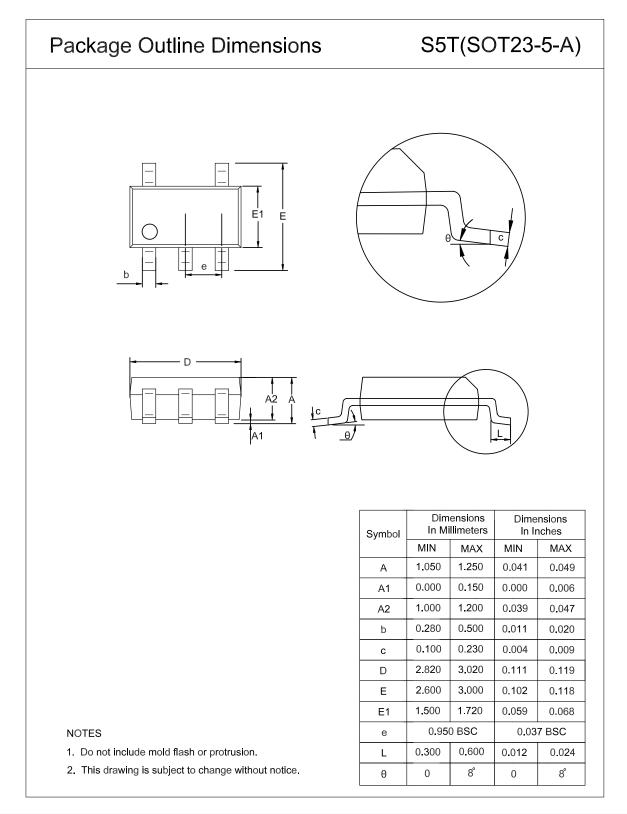




Figure 12. Typical Application Circuit

Tape and Reel Information



Package Outline Dimensions

SOT23-5

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan
TPV6823V-TR	-40°C to 125°C	SOT23-5	V1V	1	Tape and Reel, 3,000	Green
TPV6823W-TR	-40°C to 125°C	SOT23-5	V1W	1	Tape and Reel, 3,000	Green
TPV6823Y-TR	-40°C to 125°C	SOT23-5	V1Y	1	Tape and Reel, 3,000	Green
TPV6823Z-TR	-40°C to 125°C	SOT23-5	V1Z	1	Tape and Reel, 3,000	Green
TPV6823R-TR	-40°C to 125°C	SOT23-5	V1R	1	Tape and Reel, 3,000	Green
TPV6823S-TR	-40°C to 125°C	SOT23-5	V1S	1	Tape and Reel, 3,000	Green
TPV6823T-TR	-40°C to 125°C	SOT23-5	V1T	1	Tape and Reel, 3,000	Green
TPV6823M-TR	-40°C to 125°C	SOT23-5	V1M	1	Tape and Reel, 3,000	Green
TPV6823L-TR	-40°C to 125°C	SOT23-5	V1L	1	Tape and Reel, 3,000	Green

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

IMPORTANT NOTICE AND DISCLAIMER

Copyright[©] 3PEAK 2012-2023. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.

单击下面可查看定价,库存,交付和生命周期等信息

>>3PEAK(思瑞浦)