

Data sheet

SAW duplexer 4G/5G band n25

Part number: B1310

Ordering code: B39202B1310P810

Date: May 02, 2023

Version: 2.0

DCN: 80-PA243-750 Rev. A

Qualcomm products mentioned herein are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

RF360 Europe GmbH
Anzinger Straße 13
81671 Munich, Germany
© 2023 Qualcomm Technologies, Inc. and/or its subsidiaries. All rights reserved

These materials, including the information contained herein, may be used only for informational purposes by the customer. Qualcomm Technologies, Inc. and/or its subsidiaries assume no responsibility for errors or omissions in these materials or the information contained herein and reserve the right to make changes to the product(s) or information contained herein without notice. The materials and information are provided on an AS IS basis, without warranty, either expressed or implied, with respect to the materials, or any output or results based on the use, application, or evaluation of such materials, including without limitation, with respect to the non-infringement of trademarks, patents, copyrights or any other intellectual property rights or other rights of third parties.

No use of this documentation or any information contained herein grants any license, whether express, implied, by estoppel or otherwise, to any intellectual property rights, including, without limitation, to any patents owned by QUALCOMM Incorporated or any of its subsidiaries.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of RF360 Europe GmbH.

Qualcomm is a trademark or registered trademark of Qualcomm Incorporated. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

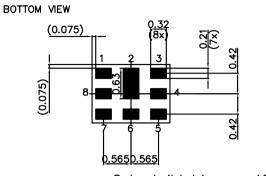
Please read **Cautions and warnings** and **Important notes** at the end of this document.

Page 2 of 30

Table of contents

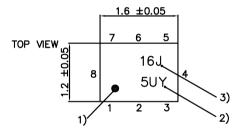
1	Application	4
	<u>Features</u> .	
3	Package	5
4	Pin configuration.	5
	Matching circuit.	
6	<u>Characteristics</u>	7
	Maximum ratings	
	Transmission coefficients.	
	Transmission coefficient (LTE).	
	Reflection coefficients.	
11	Packing material.	22
	Marking	
13	Soldering profile.	27
	Annotations.	
	Cautions and warnings	
	Important notes	30

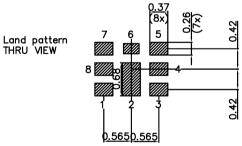
1 Application


- Duplexer for 4G and 5G band25
- 4G/5G band n25 uplink: 1882.5 MHz (pass band 65 MHz)
- 4G/5G band n25 downlink: 1962.5 MHz (pass band 65 MHz)
- Qualcomm® micro-Acoustic Power Management (MAPM)
- Low insertion attenuation
- Low amplitude ripple
- Usable pass band 65 MHz

2 Features

- Package size 1.6±0.05 mm × 1.2±0.05 mm
- Package height 0.5 mm (max.)
- Approximate weight 2 mg
- RoHS compatible
- Package for Surface Mount Technology (SMT)
- Ni/Au-plated terminals
- Electrostatic Sensitive Device (ESD)
- Moisture Sensitivity Level 3 (MSL3)


3 Package


Pad and pitch tolerance ± 0.05

SIDE VIEW

- 1) Marking for pad number 1
- 2) Example of encoded lot number
- 3) Example of encoded filter type number

Landing pad tolerance -0.02

Figure 1: Drawing of package with package height A = 0.5 mm (max.). See Sec. Package information (p. 29).

4 Pin configuration

- ı 1 RX
- 1 3 TX
- 6 ANT
- **2**, 4, 5, 7, Ground 8

5 Matching circuit

 $L_{n6} = 5.4 \text{ nH}$

Europe GmbH

 $L_{s3} = 3.8 \text{ nH}$

■ $L_{s1} = 2.0 \text{ nH}$

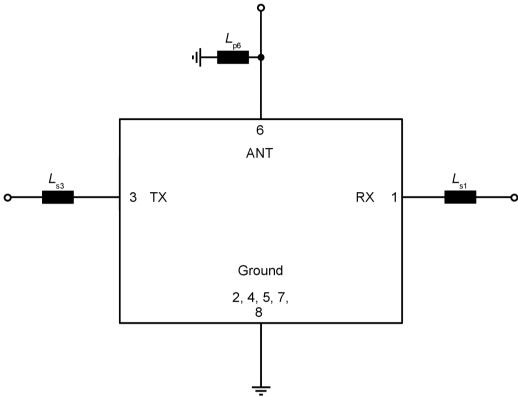


Figure 2: Schematic of matching circuit.

External shunt inductor for ESD protection is recommended at any ports towards antenna.

6 Characteristics

6.1 TX - ANT

Temperature range for specification $T_{\rm SPEC} = -30~^{\circ}{\rm C}~...~+85~^{\circ}{\rm C}$ TX terminating impedance $Z_{\rm TX} = 50~\Omega + 3.8~{\rm nH^{1)}}$ ANT terminating impedance $Z_{\rm ANT} = 50~\Omega~//~5.4~{\rm nH^{1)}}$ RX terminating impedance $Z_{\rm RX} = 50~\Omega + 2.0~{\rm nH^{1)}}$

Characteristics TX – ANT				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$	
Center frequency			f _C	_	1882.5		MHz
Maximum insertion attenuation			$\alpha_{\text{INT}}^{ 2)}$				
	1850 1910	MHz		_	1.1	2.03)	dB
	1850 1910	MHz		_	1.1	2.0	dB
	1850 1915	MHz		_	1.3	2.1 ³⁾	dB
	1850 1915	MHz		_	1.3	2.1	dB
Maximum insertion attenuation			$\boldsymbol{\alpha}_{\text{max}}$				
	1850.15 1914.85	MHz		_	1.7	2.63)	dB
	1850.15 1914.85	MHz		_	1.7	2.74)	dB
Amplitude ripple (p-p)							
	1850 1910	MHz	$\Delta\alpha^{\scriptscriptstyle 5)}$	_	0.4	1.4	dB
	1850 1915	MHz	$\Delta\alpha^{\scriptscriptstyle 5)}$	_	0.7	1.6	dB
	1850.15 1914.85	MHz	$\Delta\alpha^{_{6)}}$	<u> </u>	0.8	1.64)	dB
Maximum VSWR			$VSWR_{max}$				
@ TX port	1850 1915	MHz		_	1.5	2.0	
	1850.15 1914.85	MHz		<u> </u>	1.5	2.04)	
@ ANT port	1850 1915	MHz		_	1.4	2.0	
	1850.15 1914.85	MHz		_	1.4	2.04)	
Minimum attenuation			$\alpha_{_{min}}$				
	10 616	MHz		50	58	_	dB
	10 960	MHz		40	50	_	dB
	617 652	MHz		50	57	_	dB
	699 716	MHz		48	55	_	dB
	728 768	MHz		47	54	_	dB
	852 894	MHz		45	51	_	dB
	1166 1187	MHz		42	46	_	dB
	1225 1250	MHz		42	46	_	dB
	1559 1563	MHz		45	49	_	dB
	1559 1606	MHz		45 ⁴⁾	49	_	dB
	1565.42 1573.37	MHz		45	49	_	dB
	1573.37 1577.47	MHz		45	49	_	dB
	1577.47 1585.42	MHz		45	49	_	dB
	1597.55 1605.89	MHz		45	50	_	dB
	1930.15 1994.85	MHz		45 ⁴⁾	58	_	dB

Characteristics TX – ANT			$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{SPEC}} \end{array}$	
	1930.25 1989.75	MHz	45	59	_	dB
	1930.25 1994.75	MHz	45	59	_	dB
	2110 2200	MHz	45	49	_	dB
	2350 2360	MHz	40	52	_	dB
	2400 2500	MHz	35	51	_	dB
	2402 2483	MHz	35	53	_	dB
	2496 2690	MHz	30	42	_	dB
	3300 3800	MHz	32	38	_	dB
	3700 3830	MHz	32	38	_	dB
	4900 5950	MHz	35	42	_	dB
	5550 5745	MHz	35	42	_	dB
	7400 7660	MHz	30	39	_	dB

See Sec. Matching circuit (p. 6).

Integrated attenuation $\alpha_{|NT|}$: Averaged power $|S_{ij}|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels.

Valid for typical temperature T = +25 °C.

Valid for temperature $T = -20 \,^{\circ}\text{C...} + 85 \,^{\circ}\text{C.}$

⁵⁾ Over any 5 MHz.

⁶⁾ Over any 20 MHz.

Europe GmbH

6.2 ANT - RX

 $\begin{array}{lll} \mbox{Temperature range for specification} & T_{\rm SPEC} & = -30~{\rm ^{\circ}C}~...~+85~{\rm ^{\circ}C} \\ \mbox{TX terminating impedance} & Z_{\rm TX} & = 50~\Omega~+3.8~{\rm nH^{1)}} \\ \mbox{ANT terminating impedance} & Z_{\rm ANT} & = 50~\Omega~/~5.4~{\rm nH^{1)}} \\ \mbox{RX terminating impedance} & Z_{\rm RX} & = 50~\Omega~+~2.0~{\rm nH^{1)}} \\ \end{array}$

Characteristics ANT – RX				$\begin{array}{c} \textbf{min.} \\ \textbf{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	max. for T_{SDEC}	
Center frequency			f _C	SPEC	1962.5	SPEC	MHz
Maximum insertion attenuation			$\alpha_{\text{INT}}^{2)}$				
	1930 1990	MHz	IINI	_	1.6	2.73)	dB
	1930 1990	MHz		_	1.6	2.7	dB
	1930 1995	MHz		_	1.6	2.73)	dB
	1930 1995	MHz		_	1.6	2.7	dB
Maximum insertion attenuation			α_{max}				
	1930.15 1994.85	MHz	IIIdx	_	2.0	3.2 ³⁾	dB
	1930.15 1994.85	MHz		_	2.0	3.7 ⁴⁾	dB
Amplitude ripple (p-p)							
	1930 1990	MHz	$\Delta \alpha^{5)}$	_	0.7	2.0	dB
	1930 1995	MHz	$\Delta \alpha^{5)}$	_	0.7	2.0	dB
	1930.15 1994.85	MHz	$\Delta \alpha^{_{6)}}$	_	0.9	2.04)	dB
Maximum VSWR			VSWR _{max}				
@ ANT port	1930 1995	MHz	max	_	1.5	2.0	
	1930.15 1994.85	MHz		_	1.5	2.04)	
@ RX port	1930 1995	MHz		_	1.6	2.0	
W NX port	1930.15 1994.85				1.6	2.0 ⁴)	
Minimum attenuation	1930.10 1934.00	IVII IZ	α		1.0	2.0	
inimiani attendation	10 960	MHz	α_{min}	35	59		dB
	10 1850	MHz		35	48	_	dB
	80	MHz		50	95		dB
	663 698	MHz		50	63		dB
	699 862	MHz		50	59	_	dB
	1710.15 1779.85	MHz		45	58	_	dB
	1770 1835	MHz		40	57	_	dB
	1850.15 1909.85			43	50	_	dB
	1850.15 1914.85			40	50	_	dB
	2055 2080	MHz		28	50	_	dB
	2300 2400	MHz		45	58	_	dB
	2305 2315	MHz		45	63	_	dB
	2400 2500	MHz		45	59	_	dB
	2402 2483	MHz		45	60	_	dB
	2496 2690	MHz		40	50	_	dB
	3300 3800	MHz		35	50	_	dB

Europe GmbH

Characteristics ANT – RX			$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$	
	3780 3910	MHz	35	43	_	dB
	3860 3990	MHz	35	43	_	dB
	4400 5950	MHz	42	52	_	dB
	4900 5950	MHz	42	53	_	dB
	5630 5810	MHz	42	58	_	dB
	5790 5985	MHz	42	58	_	dB
	7720 7980	MHz	35	42	_	dB

See Sec. Matching circuit (p. 6). Integrated attenuation α_{INT} : Averaged power $|S_{ij}|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels. 2)

³⁾ Valid for typical temperature T = +25 °C.

⁴⁾ Valid for temperature $T = -20 \,^{\circ}\text{C...} + 85 \,^{\circ}\text{C.}$

Over any 5 MHz.

Over any 20 MHz.

6.3 TX - RX

Europe GmbH

 $\begin{array}{lll} \mbox{Temperature range for specification} & T_{\rm SPEC} & = -30~{\rm ^{\circ}C}~...~+85~{\rm ^{\circ}C} \\ \mbox{TX terminating impedance} & Z_{\rm TX} & = 50~\Omega~+3.8~{\rm nH^{1)}} \\ \mbox{ANT terminating impedance} & Z_{\rm ANT} & = 50~\Omega~//~5.4~{\rm nH^{1)}} \\ \mbox{RX terminating impedance} & Z_{\rm RX} & = 50~\Omega~+~2.0~{\rm nH^{1)}} \\ \end{array}$

Characteristics TX – RX				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$	
Minimum isolation							
	1850 1910	MHz	$\alpha_{\text{INT}}^{ 2)}$	50 ³⁾	54	_	dB
	1850 1910	MHz	$\alpha_{\text{INT}}^{ 2)}$	50	54	_	dB
	1850 1915	MHz	$\alpha_{\text{INT}}^{ 2)}$	50 ³⁾	54	_	dB
	1850 1915	MHz	$\alpha_{\text{INT}}^{ 2)}$	50	54	_	dB
	1850.15 1914.85	MHz	$\alpha_{\text{INT}}^{}^{4)}}$	485)	53	_	dB
	1850.15 1914.85	MHz	$\alpha_{\text{INT}}^{}}$	495)	53	_	dB
	1930 1990	MHz	$\alpha_{\text{INT}}^{ 2)}$	55 ³⁾	63	_	dB
	1930 1990	MHz	$\alpha_{\text{INT}}^{ 2)}$	55	63	_	dB
	1930 1995	MHz	$\alpha_{\text{INT}}^{}2)}$	55 ³⁾	63	_	dB
	1930 1995	MHz	$\alpha_{\text{INT}}^{ 2)}$	55	63	_	dB
	1930.15 1994.85	MHz	$\alpha_{\text{INT}}^{}^{4)}}$	51 ⁵⁾	62	_	dB
	1930.15 1994.85	MHz	$\alpha_{\text{INT}}^{}}$	51 ⁵⁾	62	_	dB
Minimum isolation			$\alpha_{_{min}}$				
	1850.15 1914.85	MHz		47 ⁵⁾	53	_	dB
	1930.15 1994.85	MHz		50 ⁵⁾	62	_	dB

¹⁾ See Sec. Matching circuit (p. 6).

Integrated attenuation α_{INT} : Averaged power $|S_i|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels.

³⁾ Valid for typical temperature T = +25 °C.

Integrated attenuation α_{INT} : Averaged power $|S_{ij}|^2$ over the center 1.08 MHz of LTE 1.4 MHz (6 RB) channels.

Valid for temperature $T = -20 \, ^{\circ}\text{C...} + 85 \, ^{\circ}\text{C.}$

Integrated attenuation α_{INT} : Averaged power $|S_{ii}|^2$ over the center 2.7 MHz of LTE 3 MHz (15 RB) channels.

Europe GmbH

7 Maximum ratings

Storage temperature	T _{STG} ¹⁾ = -40 °C +90 °C	
DC voltage	$ V_{DC} ^{3)} = 0 \text{ V (max.)}^{2)}$	
ESD voltage		
	$V_{ESD}^{4)} = 275 \text{ V (max.)}$	Human body model.
	$V_{\rm ESD}^{5)} = 1000 \rm V (max.)$	Charged device model.
Input power	P _{IN}	
@ TX port: 1850 1915 MHz	31 dBm	5 MHz 5G-NR (DFT-s-OFDM) (1 RB) for 5000 h @ 50 °C.
@ TX port: 1850 1915 MHz	29 dBm	5 MHz 5G-NR (CP-OFDM) (1 RB) for 5000 h @ 50 °C.

Not valid for packaging material. Storage temperature for packaging material is -25 °C to +40 °C.

²⁾ 168h Damp Heat Steady State acc. IEC 60068-2-67 Cy.

³⁾ In case of applied DC voltage blocking capacitors are mandatory.

According to JESD22-A114F (HBM – Human Body Model), 1 negative & 1 positive pulse.

⁵⁾ According to JESD22-C101C (CDM – Field Induced Charged Device Model), 3 negative & 3 positive pulses.

8 **Transmission coefficients**

Europe GmbH

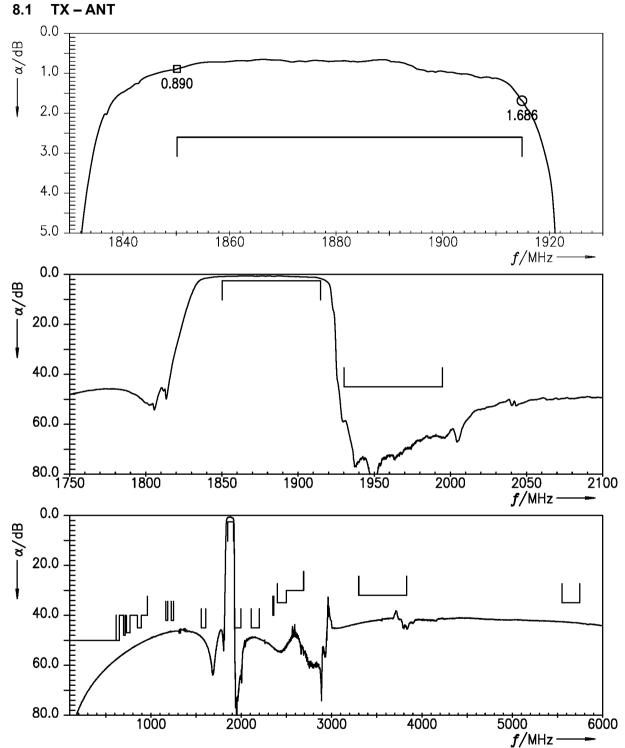


Figure 3: Attenuation TX – ANT.

Europe GmbH

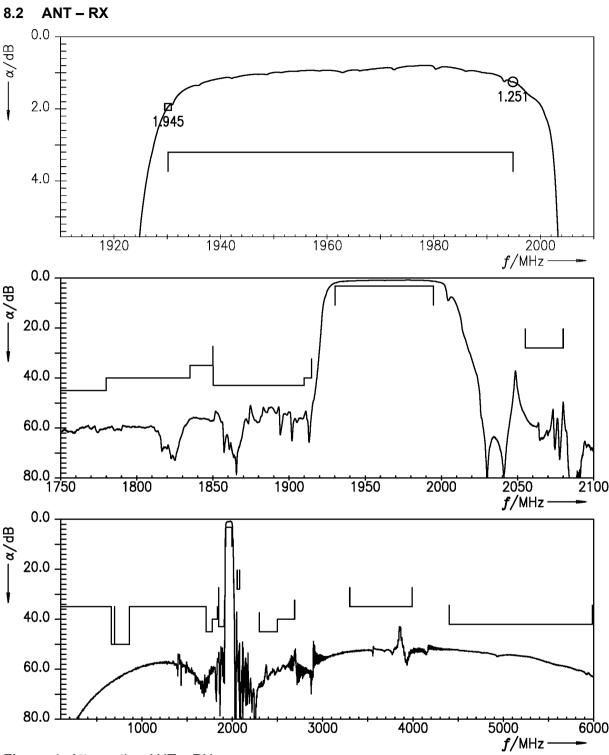


Figure 4: Attenuation ANT – RX.

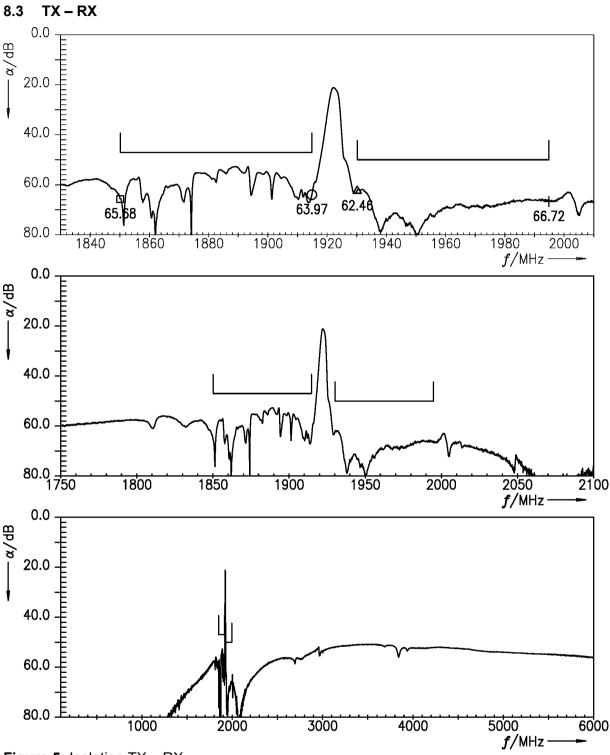


Figure 5: Isolation TX – RX.

9 **Transmission coefficient (LTE)** 0.0 20.0 40.0 60.0 61.9 66.27 66.21 68.52 0.08 1980 2000 1840 1860 1880 1900 1920 1940 1960 f/MHz0.0 20.0 40.0 60.0 80.0 <u>ہمہ</u> 2100 2050 1800 2000 1850 1900 1950 *f/*MHz 0.0 20.0 40.0 60.0 80.0

Figure 6: Isolation (LTE) (integration window = 1.4 MHz) TX – RX.

2000

1000

3000

4000

6000

5000

f/MHz -

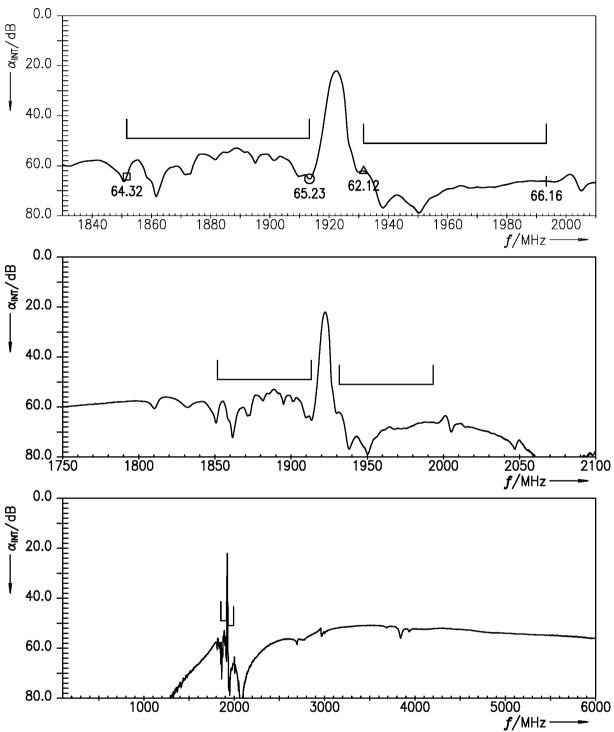


Figure 7: Isolation (LTE) (integration window = 3 MHz) TX – RX.

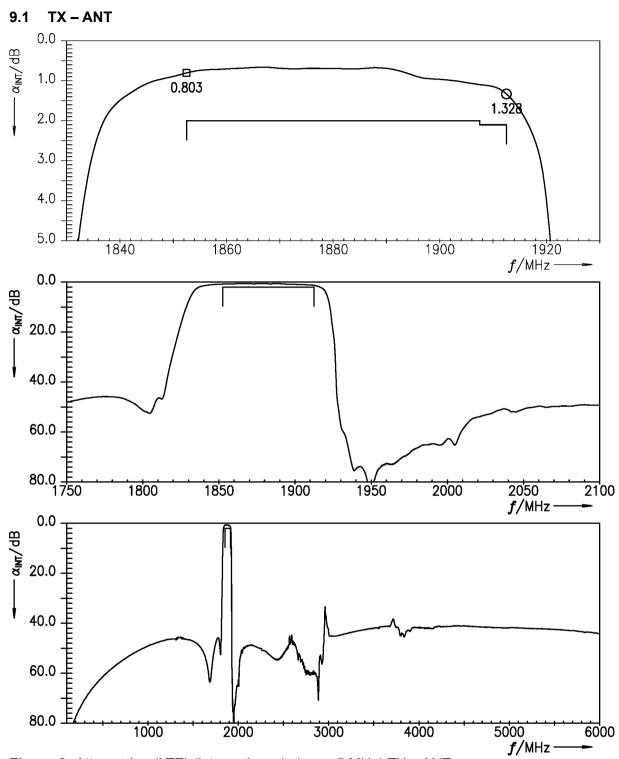


Figure 8: Attenuation (LTE) (integration window = 5 MHz) TX – ANT.

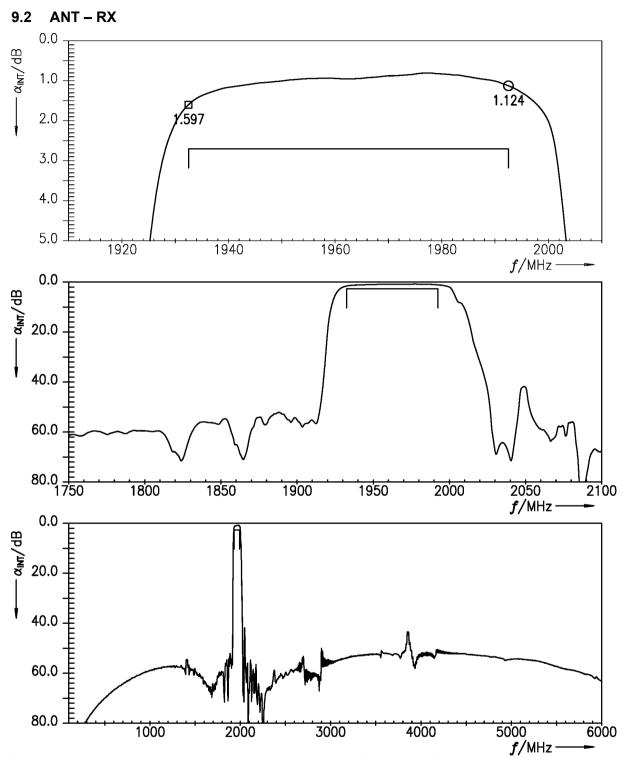


Figure 9: Attenuation (LTE) (integration window = 5 MHz) ANT – RX.

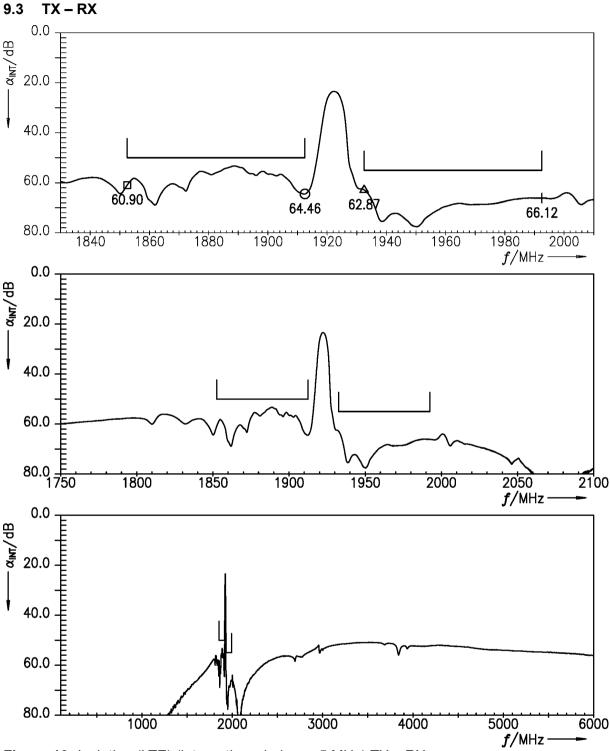
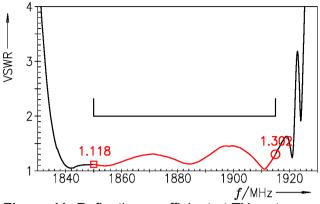



Figure 10: Isolation (LTE) (integration window = 5 MHz) TX – RX.

10 Reflection coefficients

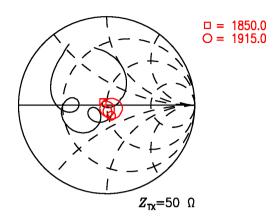
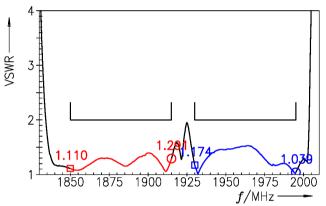



Figure 11: Reflection coefficient at TX port.

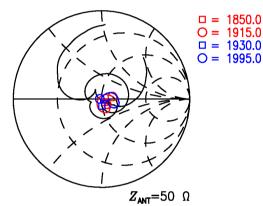
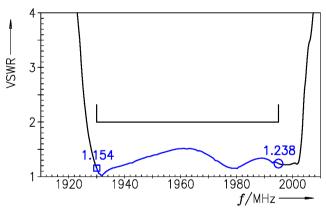
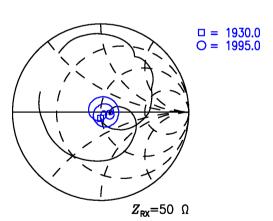
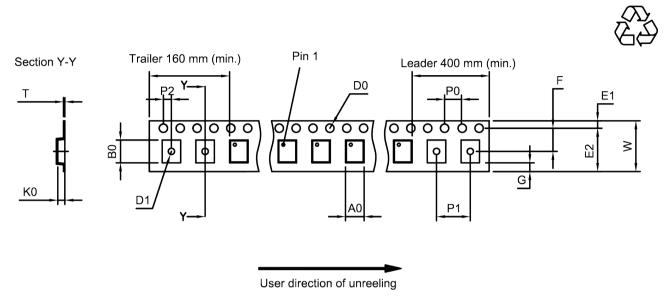



Figure 12: Reflection coefficient at ANT port (TX and RX frequencies).




Figure 13: Reflection coefficient at RX port.

11 Packing material

11.1 Tape

Europe GmbH

Figure 14: Drawing of tape (first-angle projection) for illustration only and not to scale. The valid tape dimensions are listed in Table 1.

A ₀	1.4±0.05 mm	E ₂	6.25 mm (min.)	P ₁	4.0±0.1 mm
B ₀	1.8±0.05 mm	F	3.5±0.05 mm	P ₂	2.0±0.05 mm
D_0	1.5+0.1/-0 mm	G	0.75 mm (min.)	Т	0.25±0.03 mm
D ₁	0.6+0.1/-0 mm	K_0	0.7±0.05 mm	W	8.0+0.3/-0.1 mm
E ₁	1.75 _{±0.1} mm	P ₀	4.0±0.1 mm		

Table 1: Tape dimensions.

Europe GmbH

11.2 Reel with diameter of 180 mm

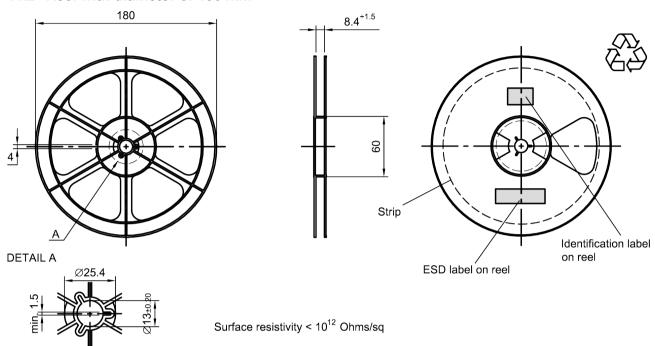


Figure 15: Drawing of reel (first-angle projection) with diameter of 180 mm.

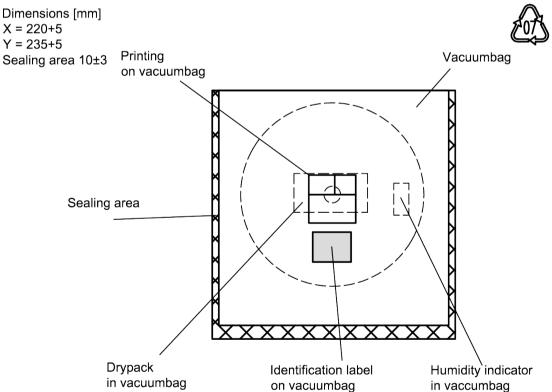


Figure 16: Drawing of moisture barrier bag (MBB) for reel with diameter of 180 mm.

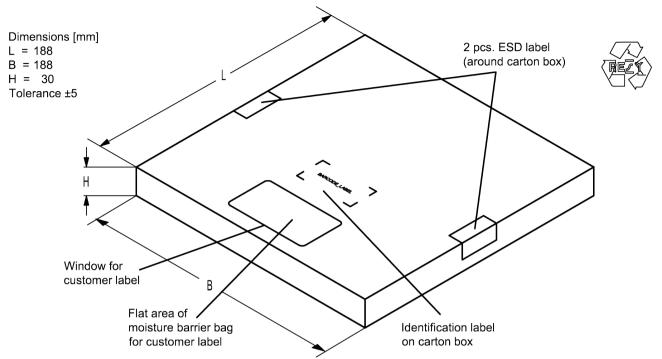
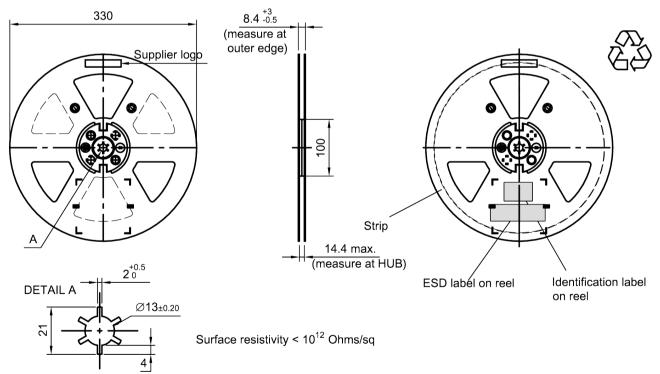



Figure 17: Drawing of folding box for reel with diameter of 180 mm.

11.3 Reel with diameter of 330 mm

Figure 18: Drawing of reel (first-angle projection) with diameter of 330 mm.

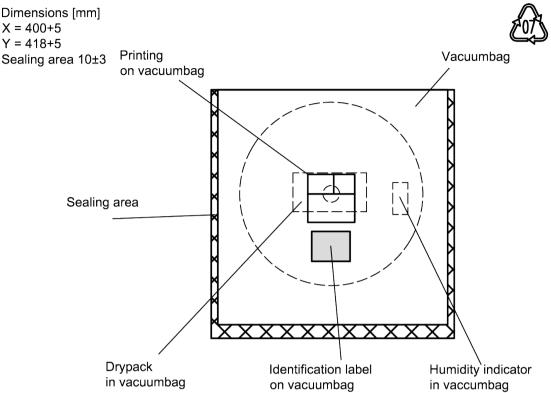


Figure 19: Drawing of moisture barrier bag (MBB) for reel with diameter of 330 mm.

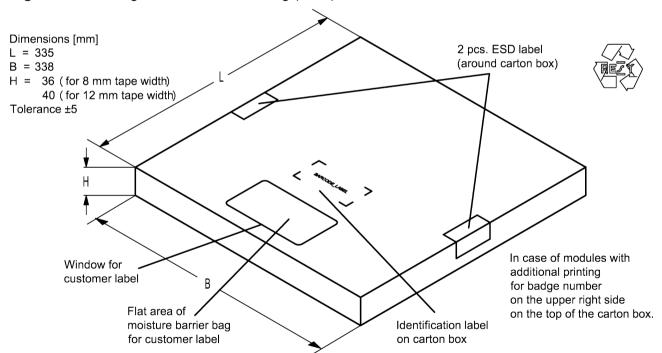


Figure 20: Drawing of folding box for reel with diameter of 330 mm.

12 Marking

Products are marked with product type number and lot number encoded according to Table 2:

■ Type number:

The 4 digit type number of the ordering code, e.g., B3xxxxB1234xxxx, is encoded by a special BASE32 code into a 3 digit marking.

Example of decoding type number marking on device in decimal code.

16J => 1234 1 x 32^2 + 6 x 32^1 + 18 (=J) x 32^0 = 1234

The BASE32 code for product type B1310 is 18Y.

■ Lot number:

The last 5 digits of the lot number, e.g., are encoded based on a special BASE47 code into a 3 digit marking.

Example of decoding lot number marking on device in decimal code.

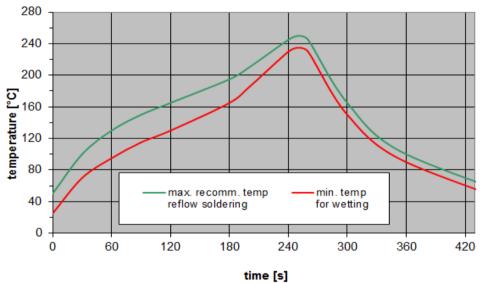
5UY => 12345

 $5 \times 47^2 + 27 = (=U) \times 47^1 + 31 = (=Y) \times 47^0 = 12345$

Adopted BASE32 code for type number							
Decimal	Base32	Decimal	Base32				
value	code	value	code				
0	0	16	G				
1	1	17	Н				
2	2	18	J				
3	3	19	K				
4	4	20	M				
5	5	21	N				
6	6	22	Р				
7	7	23	Q				
8	8	24	R				
9	9	25	S				
10	Α	26	Т				
11	В	27	V				
12	С	28	W				
13	D	29	X				
14	E	30	Y				
15	F	31	Z				

Adopted BASE47 code for lot number							
Decimal value	Base47 code	Decimal value	Base47 code				
0	0	24	R				
1	1	25	S				
2	2	26	Т				
3	3	27	U				
4	4	28	V				
5	5	29	W				
6	6	30	Х				
7	7	31	Y				
8	8	32	Z				
9	9	33	b				
10	Α	34	d				
11	В	35	f				
12	С	36	h				
13	D	37	n				
14	E	38	r				
15	F	39	t				
16	G	40	V				
17	Н	41	\				
18	J	42	?				
19	K	43	{				
20	L	44	}				
21	М	45	<				
22	Ν	46	>				
23	Р						

Table 2: Lists for encoding and decoding of marking.



13 Soldering profile

The recommended soldering process is in accordance with IEC $60068-2-58-3^{rd}$ edit and IPC/JEDEC J-STD-020B.

ramp rate	≤ 3 K/s
preheat	125 °C to 220 °C, 150 s to 210 s, 0.4 K/s to 1.0 K/s
T > 220 °C	30 s to 70 s
T > 230 °C	min. 10 s
T > 245 °C	max. 20 s
<i>T</i> ≥ 255 °C	_
peak temperature T_{peak}	250 °C +0/-5 °C
wetting temperature T_{min}	230 °C +5/-0 °C for 10 s ± 1 s
cooling rate	≤ 3 K/s
soldering temperature T	measured at solder pads

Table 3: Characteristics of recommended soldering profile for lead-free solder (Sn95.5Ag3.8Cu0.7).

Figure 21: Recommended reflow profile for convection and infrared soldering – lead-free solder.

14 Annotations

14.1 RoHS compatibility

ROHS-compatible means that products are compatible with the requirements according to Art. 4 (substance restrictions) of Directive 2011/65/EU of the European Parliament and of the Council of June 8th, 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment ("Directive") with due regard to the application of exemptions as per Annex III of the Directive in certain cases.

14.2 Scattering parameters (S-parameters)

The pin/port assignment is available in the headers of the S-parameter files. Please contact your local RF360 sales office.

14.3 Ordering codes, product IDs, labels, and packing units

Ordering code	Product ID	RF360 label	Packing unit
B39202B1310P810	B39202-B1310-P810-W05	B39202B1310P810W 5	5000 pcs

Table 4: Ordering codes / product IDs and packing units. Shipment will come from either Singapore or Wuxi location.

15 Cautions and warnings

15.1 Display of ordering codes for RF360 products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of RF360, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under https://rffe.gualcomm.com/.

15.2 Material information

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

For information on recycling of tapes and reels please contact one of our sales offices.

15.3 Moldability

Before using in overmolding environment, please contact your local RF360 sales office.

15.4 Package information

Landing area

The printed circuit board (PCB) land pattern (landing area) shown is based on RF360 internal development and empirical data and illustrated for example purposes, only. As customers' SMD assembly processes may have a plenty of variants and influence factors which are not under control or knowledge of RF360, additional careful process development on customer side is necessary and strongly recommended in order to achieve best soldering results tailored to the particular customer needs.

Dimensions

Unless otherwise specified all dimensions are understood using unit millimeter (mm).

Projection method

Unless otherwise specified first-angle projection is applied.

16 Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, RF360 Europe GmbH and its affiliates are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an RF360 product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (https://rffe.qualcomm.com). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.

The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

单击下面可查看定价,库存,交付和生命周期等信息

>>Qualcomm-RF360