2A Ultra-small Load Switch with Slew Rate Control

devices.

switch is disabled.

General Description

The AW3511X family load switch integrates a $64m\Omega$

(typ.) P-channel MOSFET, which can operate over

a wide input range of 1V to 5.5V. The AW3511X

features output slew rate control, limiting inrush

currents during turn-on to protect downstream

In addition, AW35111/AW35113 have QOD function which can prevent the output from floating when the

There is a Reverse Current Protection(RCP)

function for AW35112/AW35112B/AW35113 when

 V_{OUT} is 33mV(typ.) greater than V_{IN} , which can

prevent the current to flowing through the P-FET or the body diode. There is no output discharge

resistor for AW35112 and AW35112B.

Features

- Integrated P-channel MOSFET load switch
- Input voltage: 1V to 5.5V
- 2A maximum continuous switch current
- Switch on-resistance(typ.): Rdson=52mΩ at VIN=5.5V Rdson=57mΩ at VIN=4.2V Rdson=64mΩ at VIN=3.3V Rdson=76mΩ at VIN=2.5V Rdson=100mΩ at VIN=1.8V Rdson=164mΩ at VIN=1.2V
 - Rdson=230m Ω at VIN=1V
- Controlled slew rate to limit inrush currents
- Ultra low shutdown current
- Internal EN pull-down/up resistor
- Quick Output Discharge(QOD) for AW35111/ AW35113
- Full time Reverse Current Protection (RCP) for AW35112/AW35112B/AW35113
- FCDFN 0.8mm*0.8mm*0.55mm-4L package
 FOWLP 0.8mm*0.8mm*0.5mm-4B package

Applications

Smartphones and Tablets Portable Devices Wearables

Typical Application Circuit

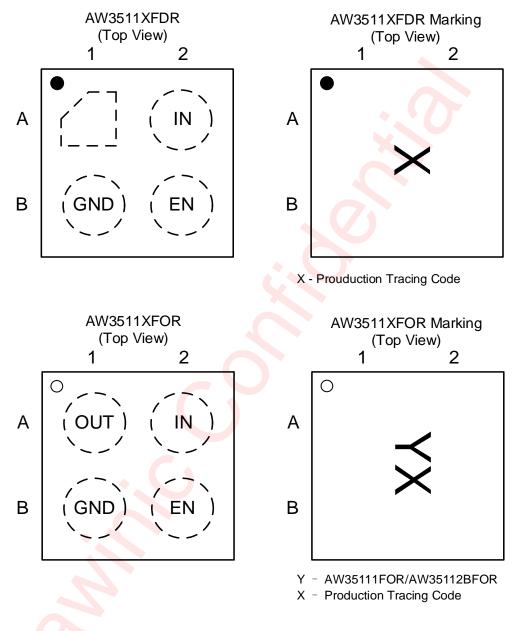
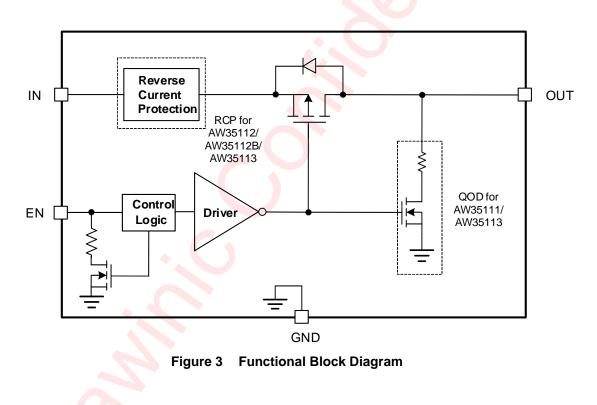



Figure 1 Typical Application Circuit of AW3511X

Pin Configuration And Top Mark

Pin Definition


Pin	Name	Description
A1	OUT	Switch output
A2	IN	Switch input and power supply
B1	GND	Device ground
B2	EN	Switch control input, active high for AW3511X, internal 7.2M Ω pull down resistor.

www.awinic.com

Device Comparison Table

Device	EN Pin Activity	QOD	RCP	t _R	ton	t _{EN}
AW35111FDR	Active High	Y	Ν	84µs	90µs	50µs
AW35111FOR	Active High	Y	N	84µs	90µs	50µs
AW35112FDR	Active High	N	Y	74µs	83µs	50µs
AW35112BFOR	Active High	N	Y	900µs	970µs	515µs
AW35113FDR	Active High	Y	Y	274µs	285µs	160µs

Functional Block Diagram

Typical Application Circuits

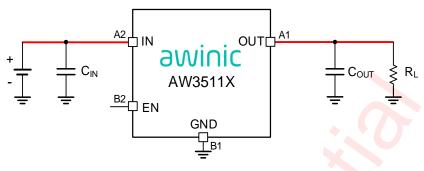


Figure 4 Typical Application Circuit of AW3511X

Ordering Information

Part Number	Temperature	Package	Marking	Moisture Sensitivity Level	Environmental Information	Delivery Form
AW35111FDR	-40℃~85℃	FCDFN 0.8mm*0.8mm-		MSL1	ROHS+HF	4500 units/
		4L		meet		Tape and Reel
AW35111FOR	10°C - 95°C	FOWLP 0.8mm*0.8mm-	U	MSL1	ROHS+HF	3000 units/
AW3511FUR	-40℃~85℃	4B	U	MISLI	RUHS+HF	Tape and Reel
	1000 0700	FCDFN	MEL			4500 units/
AW35112FDR	-40℃~85℃	0.8mm*0.8mm- 4L		MSL1	ROHS+HF	Tape and Reel
		FOWLP	0	MCL 4		3000 units/
AW35112BFOR	-40℃~85℃	0.8mm*0.8mm- 4B	2	MSL1	ROHS+HF	Tape and Reel
AW35113FDR		FCDFN 0.8mm*0.8mm-		MSL1		4500 units/
AVVSSTISFUR	-40℃~85℃	4L		IVIOL I	ROHS+HF	Tape and Reel

Absolute Maximum Ratings^(NOTE1)

PARAMETE	RANGE	
Supply Voltage R	ange V _{IN}	-0.3V to 6V
Enable Voltage Range	EN	-0.3V to 6V
Output Voltage Range	OUT	-0.3V to 6V
Maximum Continuous Switch	Current for $V_{IN} \ge 2V$	2A
Maximum Continuous Switch	Current for V _{IN} ≥ 1.5V	1.5A
Maximum Continuous Switch Curren	t for $1.2V \le V_{IN} \le 1.5V^{(NOTE 2)}$	1A
Maximum Continuous Switch Curre	nt for $1V \le V_{IN} \le 1.2V^{(NOTE 2)}$	0.5A
Maximum Peak Switch Currer	nt for $V_{IN} \ge 2.5 V^{(NOTE 3)}$	2.5A
Junction-to-ambient Thermal	Resistance θ _{JA} ^(NOTE 4)	153°C/W
Operating Free-air Tem	perature Range	-40°C to 85°C
P _D (Power Dissipation	ר) at T₄=25ºC	0.81W
Maximum Junction Ten	nperature T _{JMAX}	150°C
Storage Tempera	ture Tstg	-65°C to 150°C
Lead Temperature (Solde	ring 10 Seconds)	260°C
	ESD	
HBM (Human Body N	Model) (NOTE 5)	±2kV
CDM(Charged Device	±1.5kV	
)TE 7)	+IT: 200mA
Latch-Up ^{(NC}		-IT: -200mA

NOTE1: Conditions out of those ranges listed in "absolute maximum ratings" may cause permanent damages to the device. In spite of the limits above, functional operation conditions of the device should within the ranges listed in "recommended operating conditions". Exposure to absolute-maximum-rated conditions for prolonged periods may affect device reliability.

NOTE2: The power mos enters saturation region, load capacity is reduced.

NOTE3: Limited by thermal design, and tested in 10ms width pulse current.

NOTE4: Thermal resistance from junction to ambient is highly dependent on PCB layout.

NOTE5: The human body model is a 100pF capacitor discharged through a $1.5k\Omega$ resistor into each pin. Test method: ESDA/JEDEC JS-001-2017.

NOTE6: All pins. Test Condition: ESDA/JEDEC JS-002-2018.

NOTE7: Test Condition: JESD78E.

Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
VIN	Input Voltage	1		5.5	V
VEN	EN Voltage	0		5.5	V
Vout	Output Voltage	0		Vin	V
CIN	Input capacitance	0.1	1		μF
Соит	Output load capacitance	0.1	1		μF

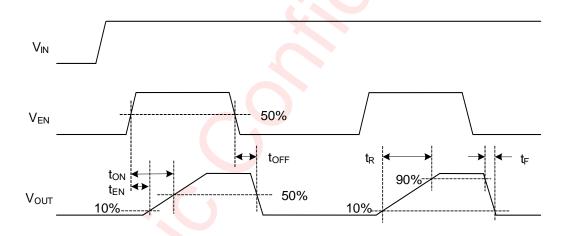
Electrical Characteristics

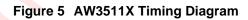
TA = 25°C unless otherwise noted. Typical values are guaranteed for VIN = 3.3V, CIN = 1 μ F, IIN ≤ 2A.

P	ARAMETER	٦	EST CONDITION	MIN	ТҮР	МАХ	UNIT		
INPUT C	CURRENTS								
			V _{IN} =V _{EN} =3.3V,I _{OUT} =0A, T _A =25°C		2		nA		
		AW35111	V _{IN} =V _{EN} =3.3V,I _{OUT} =0A, Ta=85°C		8		nA		
		AW55111	V _{IN} =V _{EN} =5.5V,I _{OUT} =0A, Ta=25°C		3		nA		
lq	Input quiescent		V _{IN} =V _{EN} =5.5V,I _{OUT} =0A, Ta=85°C		15		nA		
IQ	current		Vin=V _{EN} =3.3V,I _{OUT} =0A, Ta=25°C		350	1000	nA		
		AW35112/ AW35112B/	Vin=Ven=3.3V,lout=0A, Ta=85°C		400		nA		
		AW35112B AW35113		V _{IN} =V _{EN} =5.5V,I _{OUT} =0A, Ta=25°C		610	2000	nA	
			V _{IN} =V _{EN} =5.5V,I _{OUT} =0A, T _A =85°C		730		nA		
			VIN= <mark>3.3V</mark> , VEN=0V, TA=25°C		16		nA		
		AW35111	V _{IN} = <mark>3</mark> .3V, V _{EN} =0V, Ta=85°C		1000		nA		
		AWSSIII	VIN=5.5V, VEN=0V, TA=25°C		35		nA		
I _{SD}	Shutdown		Shutdown current from IN		VIN=5.5V, VEN=0V, TA=85°C		1650		nA
ISD	to GND		VIN=3.3V, VEN=0V, TA=25°C		275	900	nA		
		AW35112/ AW35112B/	VIN=3.3V, VEN=0V, TA=85°C		750		nA		
		AW35112B/ AW35113	VIN=5.5V, VEN=0V, TA=25°C		500	1500	nA		
			V _{IN} =5.5V, V _{EN} =0V, T _A =85°C		1550		nA		
POWER	а ѕwітсн								
I _{LEAKEN}	EN pin leakage current		V _{IN} =0V, V _{EN} =5.5V		700	1000	nA		
R _{EN}	EN pi <mark>n</mark> pull down resi <mark>stor</mark>		V _{IN} =5V, V _{EN} =0.4V		7.2		MΩ		
R _{DIS}	Output discharge resistance		V _{IN} =5.0V, V _{EN} =low, I _{OUT} Sinking 2mA (for AW35111/AW35113)				Ω		
		V _{IN} =5.	5V, Iout=0.2A, TA=25°C		52	60			
	Internal switch	V _{IN} =3.	3V, Iout=0.2A, Ta=25°C		64	80			
R_{dson}	MOSFET	V _{IN} =1.	8V, Iout=0.2A, Ta=25°C		100	120	mΩ		
	on-state resistance	V _{IN} =1.	2V, Iout=0.2A, Ta=25°C		200	-			
		V _{IN} =1		230	280				

Electrical Characteristics (continued)

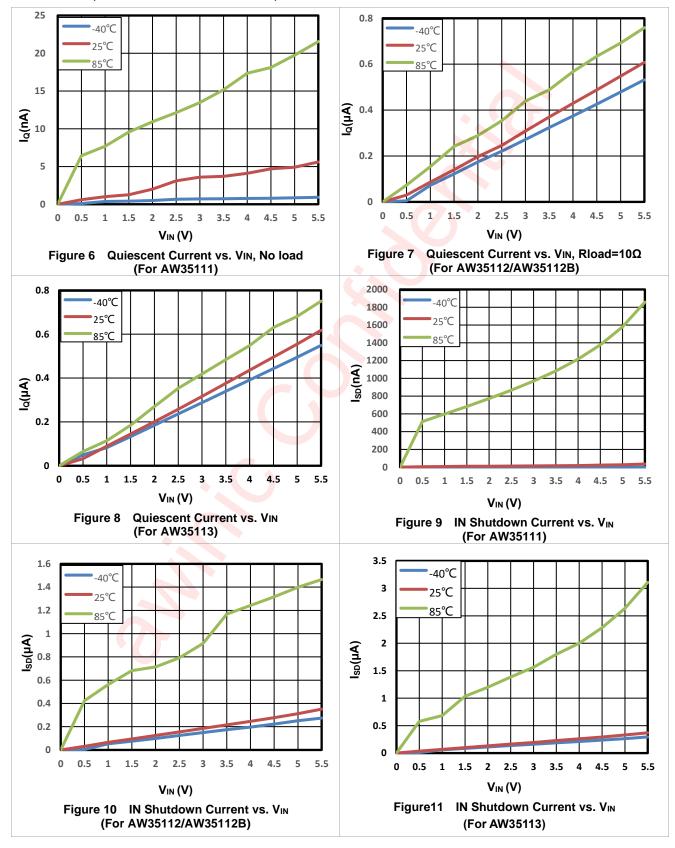
T_A = 25°C unless otherwise noted. Typical values are guaranteed for V_{IN} = 3.3V, C_{IN} = 1 μ F, I_{IN} ≤ 2A.

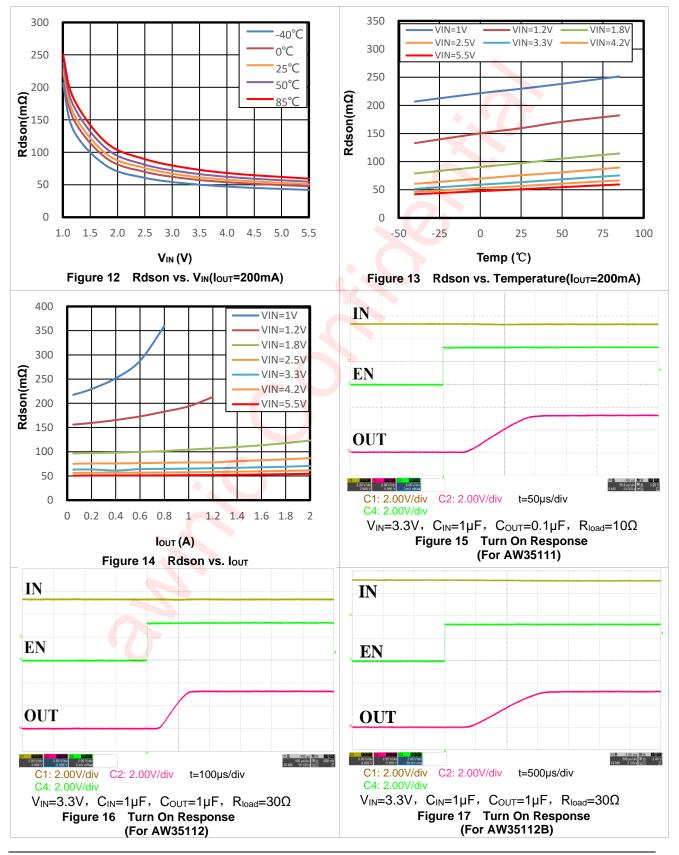

P	ARAMETER	TEST	TEST CONDITION			MAX	UNIT
POWER	RSWITCH						
			AW35111		84		
	Output rise		AW35112		74		
t _R	time		AW35112B		900		
			AW35113		274		
			AW35111		90		
ton	Switch turn on		AW35112		83		
LON	time	V _{IN} =3.3V,	AW35112B		970		
		Cουτ=0.1μF, Rουτ=10Ω for	AW35113		285		
		AW35111	AW35111		50		
t	Enable time		AW35112		50		
t _{EN}		Vιℕ=3.3V, Cουτ=1μF,	AW35112B		515		μs
		Rouτ=30Ω for AW35112/	AW35113		160		
		AW35112/ AW35112B/	AW35111		2		
4 _	Output fall time	AW35113	AW35112		63		
t⊧			AW35112B		80		
			AW35113		53		
			AW35111		2.5		
t	Switch turn off		AW35112		15		
toff	time		AW35112B		15		
			AW35113		13		
VIH	EN input high threshold level			1			V
VIL	EN input low threshold level					0.4	V


Electrical Characteristics (continued)

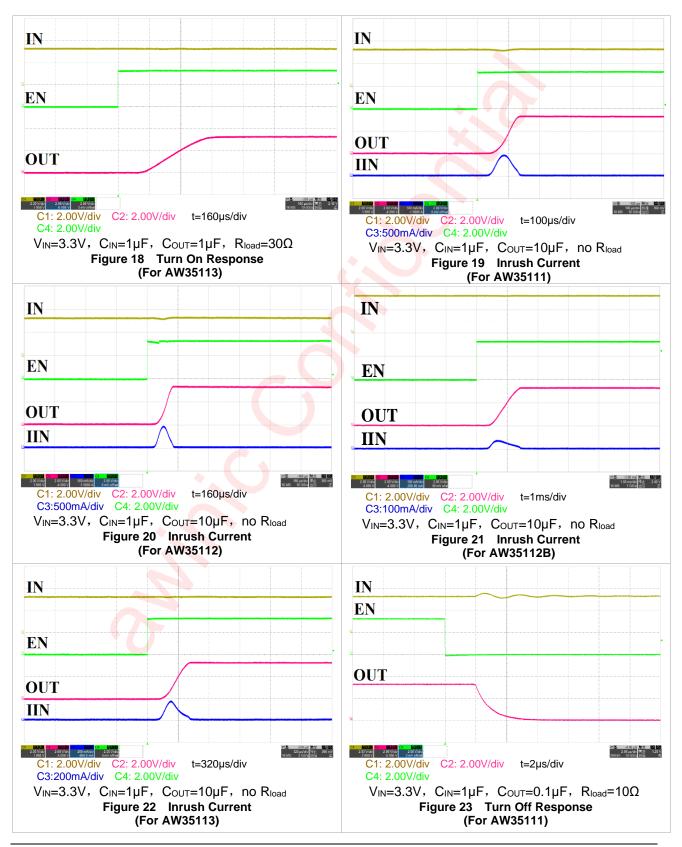
 $T_A = 25^{\circ}C$ unless otherwise noted. Typical values are guaranteed for $V_{IN} = 3.3V$, $C_{IN} = 1\mu$ F, $I_{IN} \le 2A$.

PA	ARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
REVERS	E CURRENT PROTE	W3511	3)			
VREV	Reverse current voltage threshold	V _{IN} =3.3V, C _{OUT} =1µF		33		mV
VREV_HYS	Reverse current voltage hysteresis	V _{IN} =3.3V, C _{OUT} =1μF		27		mV
IREV_ACT	Reverse activation current	Vin=3.3V, Couτ=1μF, Vouτ > Vin		0.5		А
I _{REV_PRO}	Reverse protection current	V _{OUT} - V _{IN} > V _{REV}		7.5		μA


Timing Diagram

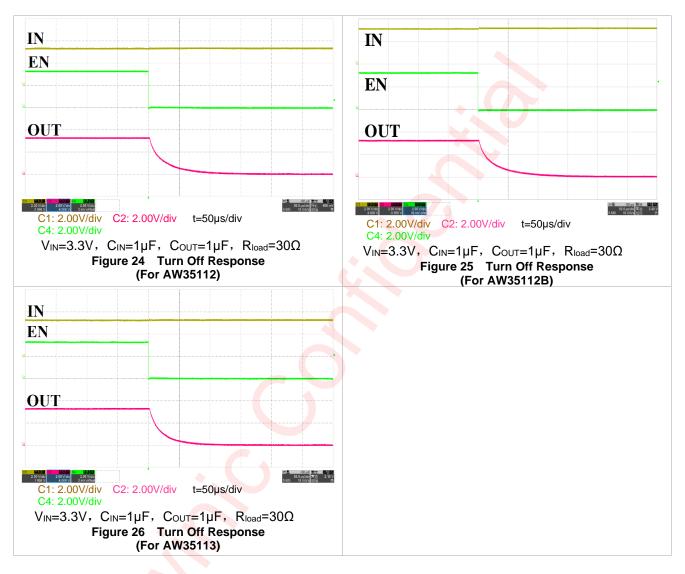

Typical Characteristics

Ambient temperature is 25°C, $C_{IN} = C_{OUT}=1\mu F$, unless otherwise noted.


Typical Characteristics (continued)

Ambient temperature is 25°C, $C_{IN} = C_{OUT}=1\mu F$, unless otherwise noted.

Typical Characteristics (continued)


Ambient temperature is 25°C, $C_{IN} = C_{OUT}=1\mu F$, unless otherwise noted.

¹¹

Typical Characteristics (continued)

Ambient temperature is 25°C, $C_{IN} = C_{OUT} = 1\mu$ F, unless otherwise noted.

Detailed Functional Description

The AW3511X integrates a high side P channel MOSFET, and provide a low on-resistance for a low voltage drop across the device. A controlled slew rate is used in applications to limit the inrush current. The part can be turned on, with a supply voltage from 1V to 5.5V.

Turn On/Off Control

Enable pin is an active high port. The device is opened when EN pin is tied low or pulled down by internal 7.2M Ω resistor, forcing PMOS switch off. The IN/OUT path is activated with a minimum of V_{IN} of 1V and EN forced to high level.

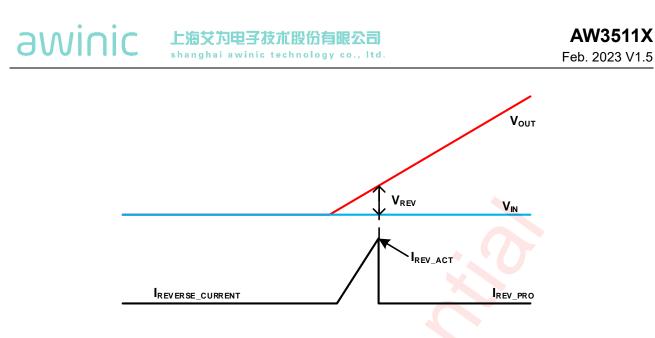
	EN	IN to OUT	OUT to GND
NN/05444/05440	Low	OFF	ON
AW35111/35113	High	ON	OFF
	Low	OFF	HIZ
AW35112/AW35112B	High	ON	HIZ

Table '	1.	Functional	Table
---------	----	------------	-------

Slew Rate Control

When the switch is enabled, the device regulates the gate voltage of MOSFET, and controls the V_{OUT} slew rate during t_R to avoid a large input inrush current. The feature reduces the interference to the power supply.

Quick Output Discharge


The AW35111/AW35113 includes the Quick Output Discharge (QOD) feature, in order to discharge the application capacitor connected on OUT pin. When EN pin is set to low level, a discharge resistance with a typical value of 88Ω is connected between the output and ground, pull down the output and prevent it from floating when the device is disabled.

Full-Time Reverse Current Protection

The AW35112/AW35112B/AW35113 include the Reverse Current Protection(RCP) function, which can prevent the current to flowing through the P-FET or the body diode when V_{OUT} greater than V_{IN} . Whatever the switch is on or off, the AW35112/AW35112B/AW35113 always have this function. When V_{OUT} - V_{IN} greater than V_{REV} , the internal comparator quickly turns off the switch, in order to prevent large reverse current from V_{OUT} to V_{IN} . The switch will return to normal operation once the reverse voltage scenario disappeared.

The IREV_ACT parameter in the Figure 27 can be calculated by the following formula

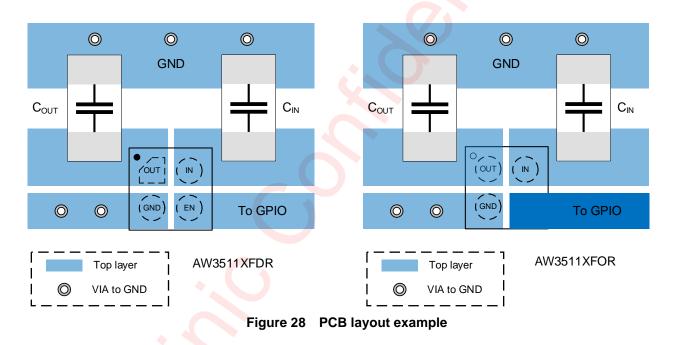
$$I_{\text{REV}_\text{ACT}} = \frac{V_{\text{REV}}}{R_{\text{dson}}}$$

Application Information

INPUT AND OUTPUT CAPACITANCE

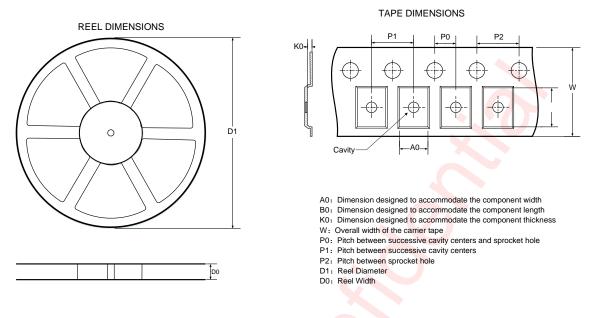
Input and output capacitance improves the performance of the device, the actual capacitance should be optimized for the particular application. For all applications, a 1μ F or greater ceramic bypass capacitor between V_{IN} and GND is recommended as close to the device as possible. This precaution reduces ringing on the input due to power supply transients. Additional input capacitance may be needed on the input to reduce voltage overshoot from exceeding the absolute maximum voltage of the device during heavy transient conditions. This is especially important during bench testing when long inductive cables are used to connect the evaluation board to the bench power-supply.

Placing a high value electrolytic capacitor on the output pin is recommended when large transient currents are expected on the output.

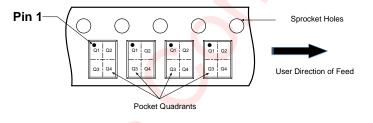

PCB Layout Consideration

The AW3511X is low ON-Resistance load switch, to obtain the optimal performance, PCB layout should be considered carefully. Here are some guidelines:

1. All the peripherals should be placed as close to the device as possible. Place the input capacitor C_{IN} on the top layer (same layer as the AW3511X) and close to IN pin, and place the output capacitor C_{OUT} on the top layer (same layer as the AW3511X) and close to OUT pin.


2. The AW3511X integrates an up to 2A rated PMOS FET, and the PCB design rules must be respected to properly evacuate the heat out of the silicon. By increasing PCB area, especially around IN and OUT pins, the $R\theta_{JA}$ of the package can be decreased, allowing higher power dissipation. Blue bold paths in Figure 28 are power lines that will flow large current, please route them on PCB as straight, wide and short as possible.

3. Use rounded corners on the power trace from the power supply connector to AW3511X to decrease EMI coupling.

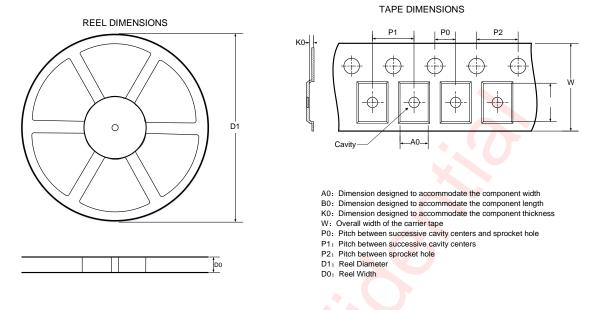


Tape And Reel Information

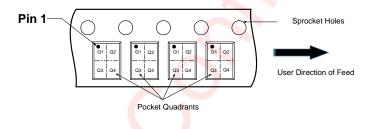
FCDFN 0.8mm*0.8mm-4L

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Note: The above picture is for reference only. Please refer to the value in the table below for the actual size


DIMENSIONS AND PIN1 ORIENTATION

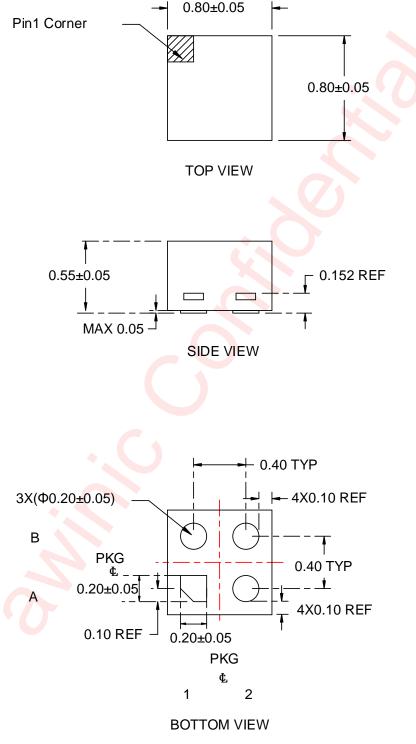
D1		A0			P0	P1	P2	W	Pin1 Quadrant
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
178.0	8.40	0.91	0.91	0.66	2.00	4.00	4.00	8.00	Q1


All dimensions are nominal

るいうに 上海艾为电子技术股份有限公司 shanghai awinic technology co., ltd.

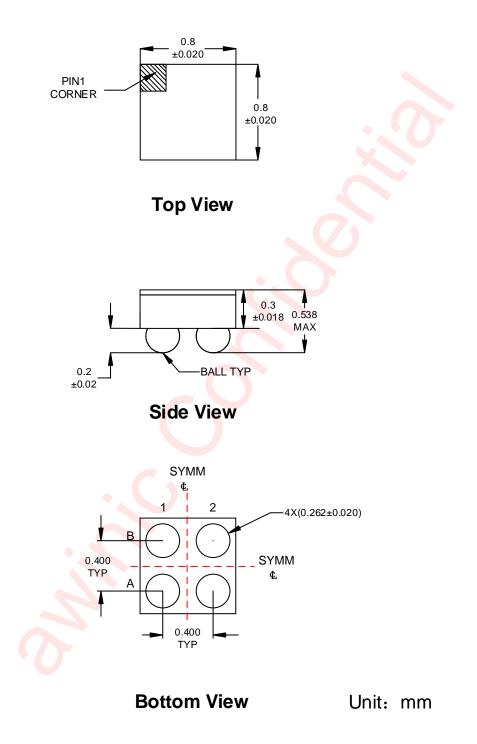
FOWLP 0.8mm*0.8mm-4B

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

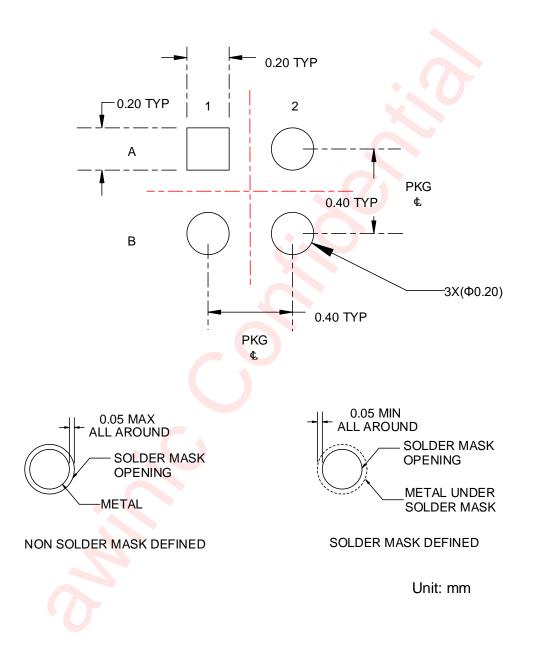

Note: The above picture is for reference only. Please refer to the value in the table below for the actual size

DIMENSIONS AND PINT ORIENTATION

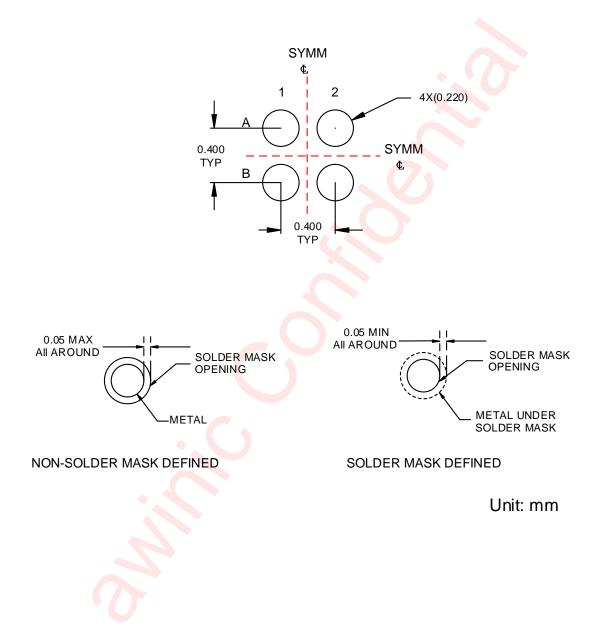
D1	D0 4	A0	B0	K0	P0	P1	P2	W	Dint Quedrant
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Pin1 Quadrant
179.0	9.2	0.85	0.85	0.59	2.00	4.00	4.00	8.00	Q1
All dime	nsions a	are nomi	nal						


Package Description

FCDFN 0.8mm*0.8mm-4L


Unit:mm

FOWLP 0.8mm*0.8mm-4B


Land Pattern Data

FCDFN 0.8mm*0.8mm-4L

FOWLP 0.8mm*0.8mm-4B

Revision History

Version	Date	Change Record
V1.0	Feb. 2022	Officially released
V1.1	Mar. 2022	 1.Add the R_{DIS} Parameter 2.Modify the value of θ_{JA} and P_D 3.Modify the Typical Characteristics(P10、P11)
V1.2	May. 2022	1.Modify the delivery form (9000→4500) 2.Modify the pitch (2→4) of Tape And Reel Information(P15)
V1.3	Oct. 2022	Add the Maximum Continuous Switch Current for $V_{IN} \ge 2V$ to 2A
V1.4	Nov. 2022	Modify the V _{IH} threshold from 1.2V to 1.1V(P7)
V1.5	Feb. 2023	 1.Add the FOWLP package information and the PCB Layout example 2.Add Electrical Characteristics and Typical Characteristics of AW35112B 3.Modify the V_{IN} minimum from 1.2V to 1V, and add Rdson data of V_{IN} at 1V 4.Modify the V_{IH} threshold from 1.1V to 1V(P7)

awinic 上海艾为电子技术股份有限公司 shanghai awinic technology co., ltd.

Disclaimer

All trademarks are the property of their respective owners. Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.

单击下面可查看定价,库存,交付和生命周期等信息

>>AWINIC(艾为)