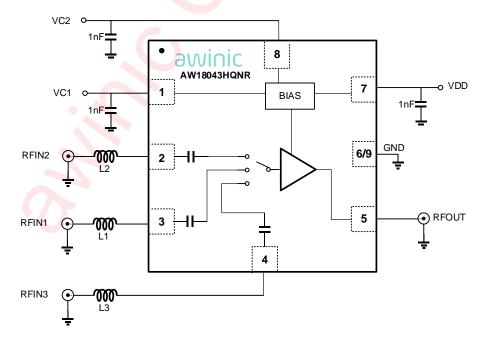
SP3T LNA for LTE mid-high band RX

Features

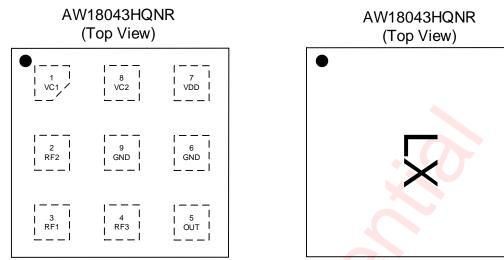
- Operating frequency 1700MHz to 2700MHz
- High power gain
 - 15dB gain at 1700MHz to 2300MHz
 - 13dB gain at 2300MHz to 2700MHz
- Low noise figure 1.0 dB
- Operation current 7.7mA
- Compact, QFN (9-pin, 1.1mm x 1.1mm x0.55mm) package, MSL1

General Description


The AW18043HQNR is a Low Noise Amplifier (LNA) integrated with SP3T designed for LTE receiver applications.

The AW18043HQNR (LNA) is provided in a compact Quad Flat No-Lead (QFN) 1.1mmx1.1mmx0.55mm-9L package. The typical application circuit is shown in Figure 1. The pin configuration and package are shown in Figure 2.

Applications


- Cell phones
- Tablets
- Other RF front-end modules

Typical Application Circuit

Pin Configuration And Top Mark

L - AW18043HQNR

X - Production Tracing Code

Figure2 Pin Configuration and Top Mark

NAME	DESCRIPTION			
VC1	Digital control 1			
RF2	RF-Port 2			
RF1	RF-Port 1			
RF3	RF-Port 3			
OUT	RFOUT			
GND	Ground			
VDD	Power Supply			
VC2	Digital control 2			
GND	Ground			
	VC1 RF2 RF1 RF3 OUT GND VDD VC2	VC1Digital control 1RF2RF-Port 2RF1RF-Port 1RF3RF-Port 3OUTRFOUTGNDGroundVDDPower SupplyVC2Digital control 2		

Pin Definition

Ordering Information

Part Number	Temperature Package		Femperature Package Marking Moisture S Leve Leve Leve Leve		Environmental Information	Delivery Form
AW18043HQNR	-40℃~85℃	WBQFN 1.1mmX1.1mm X0.55mm-9L	L	MSL1	ROHS+HF	4500 units/ Tape and Reel

Absolute Maximum Ratings^(NOTE1)

PARAMETERS	RANGE	Condition		
Supply Voltage VDD	-0.3V to +3.3V	T _A =+25 °C		
Supply Voltage VIO	-0.3V to +3.3V	T _A =+25 °C		
Max input power (Gain mode)	10dBm	CW, VSWR=1:1,T _A =+25 °C		
Operating free-air temperature range	-40°C to 85°C			
Storage temperature T _{STG}	-65°C to 150°C			
Lead temperature (soldering 10 seconds)	260°C			
	ESD			
HBM (Human Body Model) ^(NOTE 2)	±1500V			
CDM (Charged Device Model) ^(NOTE 3)	±1000V			
Latch Up ^(NOTE 4)	+IT: 200mA -IT: -200mA			

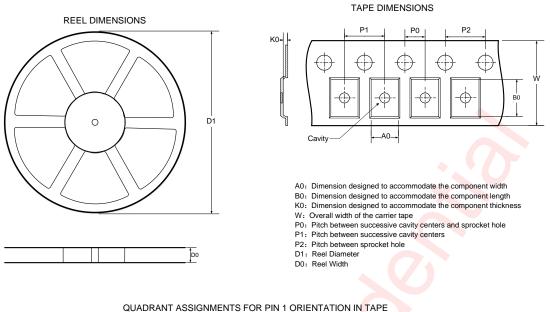
NOTE1: Conditions out of those ranges listed in "absolute maximum ratings" may cause permanent damages to the device. In spite of the limits above, functional operation conditions of the device should within the ranges listed in "recommended operating conditions". Exposure to absolute-maximum-rated conditions for prolonged periods may affect device reliability.

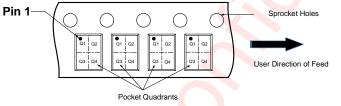
NOTE2: The human body model is a 100pF capacitor discharged through a $1.5k\Omega$ resistor into each pin. Test method: ESDA/JEDEC JS-001-2017.

NOTE3: All pins. Test method: ESDA/JEDEC JS-002-2018. NOTE4: Standard: JESD78E

Truth Table

VC2	VC1	Active Path
0	1	RF1 active
1	0	RF2 active
1	1	RF3 active
0	0	Power down


Note: "1" = 1.4 V to VDD. "0" = 0 V to +0.3 V.

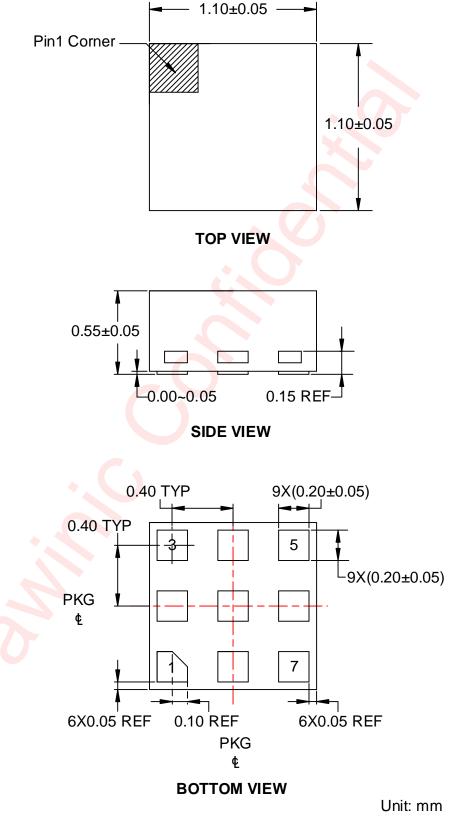

Electrical Characteristics

Typically, TA=+25°C and V_{DD}=2.8V, EN=1.8V. Input matched to 50Ω using a 4.7nH inductor for 2300MHz to 2700MHz and a 7.5nH inductor for 1700MHz to 2300MHz (unless otherwise noted), all data measured on AW18043HQNR's EVB

Symbol	Parameter	Test Condition	Min	Тур	Мах	Units	
DC Elect	rical Characteristic				1	1	
V_{DD}	Supply Voltage		1.65	2.8	33	v	
	Digital Input-Logic High		1.4		VDD	v	
V _{CTL}	Digital Input-Logic Low				0.3	v	
I _{DD}	Supply Current	VDD=2.8V	4	7.7	10	mA	
RF Speci	fications						
	Power Gain	1700MHz – 2300MHz	13	15	17	dB	
Gp	Power Gain –	2300MHz – 2700MHz	11.5	13.5	15.5	dB	
RL _{in}		1700MHz – 2300MHz		-10	-5	dB	
	Input Return Loss	2300MHz – 2700MHz		-10	-6	dB	
	Outraut Datum Laga	1700MHz – 2300MHz		-10	-6	dB	
RL _{out}	Output Return Loss	2300MHz – 2700MHz		-10	-5		
	Reverse Isolation	1700MHz – 2300MHz	22	25		dB	
ISO	Reverse isolation	2300MHz – 2700MHz	22	25			
NF	Noise Figure	1700MHz – 2300MHz		1.0	1.4		
NГ	Noise Figure	2300 <mark>M</mark> Hz – 2700MHz		1.1	1.5	dB	
IP1dB	In-band input	1700MHz – 2300MHz	-10	-8			
IFIUD	1dB-compression point	2300MHz – 2700MHz	-6	-4		dBm	
K	Stability Factor		1				
ton	Switching on time	50% VCTL to 10/90% RF		1	2	us	
$t_{\rm off}$	Switching off time	50% VCTL to 90/10% RF		1	2	us	
t _{st}	Startup time	Shutdown state to any RF switch state		2	3	us	

Tape and Reel Information

Note: The above picture is for reference only. Please refer to the value in the table below for the actual size


DIMENSIONS AND PIN1	ORIENTATION

D1	D0	A0	B0	K0	P0	P1	P2	w	Pin1 Quadrant
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
178	8.4	1.3	1.3	0.69	2	4	4	8	Q1
All dimensions are nominal									

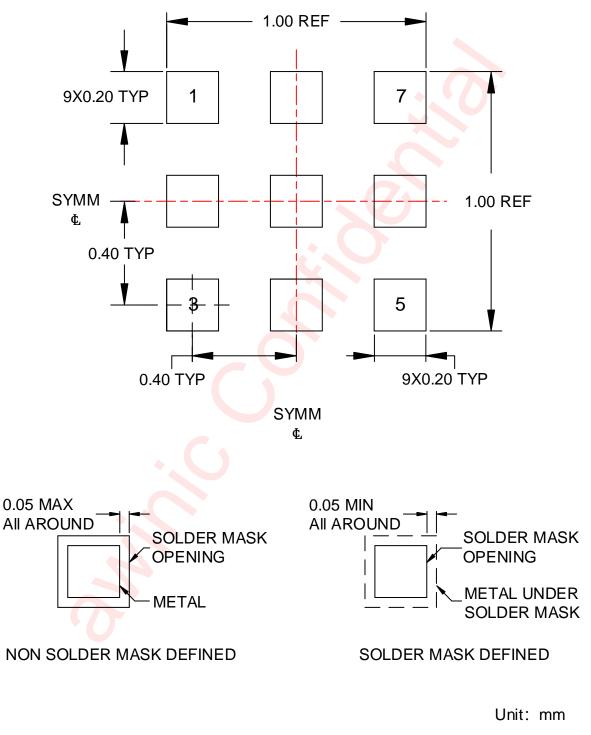

Package Outline Dimension

Figure 4 Package Outline Dimension

Land Pattern Data

Figure 5 Land Pattern

Revision History

	Version	Date	Change Record
ſ	V1.0	Mar. 2022	Officially Released

www.awinic.com

awinic

Disclaimer

All trademarks are the property of their respective owners. Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.

单击下面可查看定价,库存,交付和生命周期等信息

>>AWINIC(艾为)