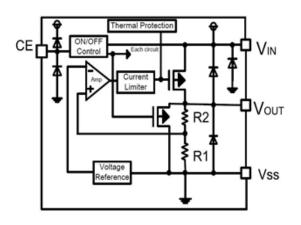


# 50V Low Current Consumption150mA CMOS Voltage Regulator


#### ■ INTRODUCTION

The LR6675 series are a group of positive voltage regulators manufactured by CMOS technologies with low power consumption and low dropout voltage, which provide large output currents even when the difference of the input-output voltage is small. The LR6675 series can deliver 150mA output current and allow input voltage as high as 60V. The series are very suitable the battery-powered equipments, such as applications and other systems requiring a quiet voltage source.

#### **■** APPLICATIONS

- Cordless Phones
- Radio control systems
- Laptop, Palmtops and PDAs
- Single-lens reflex DSC
- PC peripherals with memory

#### **■ BLOCK DIAGRAM**

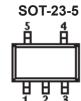


# **LR6675 Series**

#### FEATURES

- Low Quiescent Current:3µA
- Operating Voltage Range: 2.5V∼50V
- Output Current: 150mA
- Low Dropout Voltage: 500mV@50mA(Vouт=3.3V)
- Output Voltage: 1.2~ 12.0V
- High Accuracy: ±2%/±1% (Typ.)
- High Power Supply Rejection Ratio: 80dB@1kHz
- Low Output Noise:
   27xVoυτ μVRMs (10Hz~100kHz)
- Excellent Line and Load Transient Response
- Built-in Current Limiter, Short-Circuit Protection
- Over-Temperature Protection
- Wireless Communication Equipments
- Portable Audio Video Equipments
- Car Navigation Systems
- LAN Cards
- Ultra Low Power Microcontroller

#### ORDER INFORMATION


#### LR6675(1)(2)(3)(4)

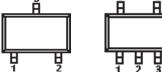
| DESIGNATOR | SYMBOL     | DESCRIPTION                                |  |
|------------|------------|--------------------------------------------|--|
|            | Α          | Without EN                                 |  |
| U          | В          | With Shutdown Function                     |  |
| 2          | Integer    | Output Voltage<br>e.g.5.0V=50<br>12.0V=120 |  |
|            | M/MC/MY/MK | Package:SOT-23-3/5                         |  |
|            | P/PT/PL    | Package:SOT-89-3                           |  |
| 3          | FT         | Package:DFN2020-6                          |  |
|            | FL         | Package:DFN2020-8                          |  |
|            | S          | Package:SOT223                             |  |
|            | Χ          | Package:SOP-8                              |  |
|            | -          | 2% Accuracy                                |  |
| 4)         | 1          | 1% Accuracy                                |  |



# **PIN CONFIGURATION**

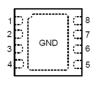


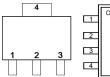



# SOT-89-3



**DFN2020-8** 


**SOT223** 


SOP-8











# LR6675A

|   |         | Р  | IN NUM | BER     |    |         | DIN         |             |  |
|---|---------|----|--------|---------|----|---------|-------------|-------------|--|
| , | SOT-23- | 3  |        | SOT-89- | 3  | SOT-223 | PIN<br>NAME | FUNCTION    |  |
| M | MC      | MY | Р      | PT      | PL | S       | INAIVIE     |             |  |
| 1 | 3       | 3  | 1      | 2       | 2  | 2/4     | Vss         | Ground      |  |
| 2 | 2       | 1  | 3      | 1       | 3  | 3       | Vouт        | Output      |  |
| 3 | 1       | 2  | 2      | 3       | 1  | 1       | Vin         | Power input |  |

#### LR6675B

# SOT-23-5

| PIN N | UMBER | SYMBOL | FUNCTION        |  |  |
|-------|-------|--------|-----------------|--|--|
| М     | MK    | STWBOL | 1 0140 11014    |  |  |
| 1     | 1     | VIN    | Power Input Pin |  |  |
| 2     | 2     | VSS    | Ground          |  |  |
| 3     | 4     | CE     | Chip Enable Pin |  |  |
| 4     | 3     | NC     | No Connection   |  |  |
| 5     | 5     | VOUT   | Output Pin      |  |  |

### LR6675B

# DFN2020-6/8

| PIN NU | PIN NUMBER |                    | FUNCTION        |
|--------|------------|--------------------|-----------------|
| FT     | FL         | PIN NAME           | FUNCTION        |
| 1      | 5/6        | V <sub>IN</sub>    | Power input Pin |
| 2      | 7          | CE                 | Chip Enable Pin |
| 3/4    | 8          | V <sub>SS</sub>    | Ground          |
| 5      | 1/2        | NC Not Connectiion |                 |
| 6      | 3/4        | V <sub>OUT</sub>   | Output Pin      |
| EP     | EP         | Thermal Pad        | Ground          |

#### LR6675B

#### SOP-8

| PIN NUMBER | DINI NI A ME     | FUNCTION        |
|------------|------------------|-----------------|
| X          | PIN NAME         | FUNCTION        |
| 1          | V <sub>OUT</sub> | Output Pin      |
| 2/5/6/7    | NC               | Not Connectiion |
| 3          | CE               | Chip Enable Pin |
| 4          | V <sub>SS</sub>  | Ground          |
| 8          | V <sub>IN</sub>  | Power input Pin |



# ■ ABSOLUTE MAXIMUM RATINGS(1)

# (Unless otherwise specified, T<sub>A</sub>=25°C)

| PARAMETER                           |                                      | SYMBOL                 | RATINGS                   | UNITS |
|-------------------------------------|--------------------------------------|------------------------|---------------------------|-------|
| Input Voltage <sup>(2)</sup>        |                                      | VIN                    | -0.3~65                   | V     |
| Output Voltage <sup>(2)</sup>       |                                      | Vout                   | -0.3~15                   | V     |
| CE Pin Voltage <sup>(2)</sup>       |                                      | Vce                    | -0.3~V <sub>IN</sub> +0.3 | V     |
| Output Current                      | Output Current                       |                        | 400                       | mA    |
|                                     | SOT-23                               |                        | 0.3                       | W     |
| Power Dissipation                   | SOT-89                               | $P_{D}$                | 0.5                       | W     |
| Operating Junction Tempe            | Operating Junction Temperature Range |                        | -40~125                   | °C    |
| Storage Temperature                 |                                      | T <sub>stg</sub>       | -40~125                   | °C    |
| Lead Temperature(Soldering, 10 sec) |                                      | T <sub>solder</sub>    | 260                       | °C    |
| ESD rating(3)                       |                                      | Human Body Model-(HBM) | 2                         | kV    |
| ESD rating <sup>(3)</sup>           |                                      | Machine Model- (MM)    | 200                       | V     |

- (1) Stresses beyond those listed under *absolute maximum ratings may* cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *recommended operating conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.
- (2) All voltages are with respect to network ground terminal.
- (3) ESD testing is performed according to the respective AEC-Q100 standard.

The human body model is a 100 pF capacitor discharged through a  $1.5k\Omega$  resistor into each pin. The machine model is a 200pF capacitor discharged directly into each pin.

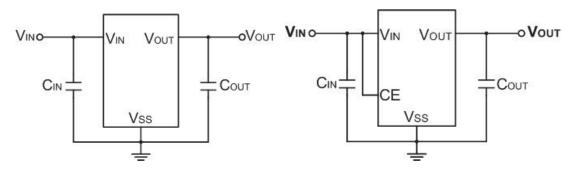
#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER                                            | MIN. | NOM. | MAX. | UNITS |
|------------------------------------------------------|------|------|------|-------|
| Supply voltage at V <sub>IN</sub>                    | 2.5  |      | 50   | V     |
| Operating junction temperature range, T <sub>j</sub> | -40  |      | 125  | °C    |
| Operating free air temperature range, T <sub>A</sub> | -40  |      | 85   | °C    |

Ver 1.1 3/18



# **■ ELECTRICAL CHARACTERISTICS**


LR6675 Series (VcE=ViN=Vout+2V, CiN=Cout=1µF, Ta=25℃, unless otherwise specified)

| PARAMETER                    | SYMBOL                         | CONI                   | DITIONS                  | MIN. | TYP.(4)   | MAX. | UNITS             |
|------------------------------|--------------------------------|------------------------|--------------------------|------|-----------|------|-------------------|
| Input Voltage                | VIN                            |                        |                          | 2.5  | _         | 50   | V                 |
| Output Voltage Range         | Vouт                           |                        |                          | 1.2  | _         | 12   | V                 |
| DC Output Accuracy           |                                | la                     | =1mA                     | -2   | _         | 2    | %                 |
| DC Output Accuracy           |                                | 100                    | - IIIA                   | -1   | _         | 1    | %                 |
| Dropout Voltage              | $V_{dif}^{(5)}$                | I <sub>OUT</sub> =50m/ | 4,V <sub>OUT</sub> =3.3V | _    | 500       |      | mV                |
| Supply Current               | Iss                            | I <sub>OUT</sub> =0A   | V <sub>OUT</sub> ≤5.0V   | _    | 3         | 6    | μA                |
| Supply Current               | ISS                            | IOUT-UA                | V <sub>OUT</sub> >5.0V   |      | 5         | 10   | μA                |
| Standby Current              | Іѕтву                          | CE                     | = V <sub>SS</sub>        |      | 0.1       | 0.5  | μA                |
| Line Regulation              | $\Delta V_{ m OUT}$            | Іоит                   | =10mA                    | _    | 0.01      | 0.3  | %/V               |
| Line Regulation              | $V_{OUT} \times \Delta V_{IN}$ | Vour +1                | V≤V <sub>IN</sub> ≤18V   |      | 0.01      | 0.3  | 70/ V             |
| Load Regulation              | <u> </u>                       | V <sub>IN</sub> = \    | / <sub>ОUТ</sub> +1V,    | _    | 10        | _    | mV                |
| Load Negulation              | <u>A</u> V001                  | 1mA≤l <sub>0</sub>     | <sub>UT</sub> ≤100mA     |      | 10        |      |                   |
| Temperature                  | $\Delta V_{ m OUT}$            | lout:                  | =10mA,                   |      | 50        |      | ppm               |
| Coefficient                  | $V_{OUT} \times \Delta T_A$    | -40°C<                 | T <sub>A</sub> <125°C    |      | 30        |      | ррпп              |
| Output Current Limit         | ILIM                           | V <sub>OUT</sub> = 0.5 | $x V_{OUT(Normal)}$ ,    | 150  | 250       |      | mA                |
| Output Guilent Linnit        | ILIIVI                         | V <sub>IN</sub> = 5V   |                          | 130  | 230       |      | ША                |
| Short Current                | I <sub>SHORT</sub>             | Vou                    | T =V <sub>SS</sub>       | _    | 20        | _    | mA                |
|                              |                                | 100Hz                  |                          |      | 75        |      | ]                 |
| Power Supply                 | PSRR                           | I <sub>OUT</sub> =50mA | 1kHz                     | _    | 80        | _    | dB                |
| Rejection Ratio              | FOINI                          | 1001-30111             | 10kHz                    | _    | 60        | _    | db                |
|                              |                                |                        | 100kHz                   | _    | 45        | _    |                   |
| Output Noise Voltage         | Von                            | BW=10Hz to 100kHz      |                          | _    | 27 x Vоит | _    | μV <sub>RMS</sub> |
| Thermal Shutdown Temperature | T <sub>SD</sub>                |                        |                          | _    | 170       | _    | °C                |
| Thermal Shutdown Hysteresis  | ΔT <sub>SD</sub>               |                        |                          | _    | 20        | _    | °C                |
| CE "High" Voltage            | Vce"H"                         |                        |                          | 1.5  |           | VIN  | V                 |
| CE "Low" Voltage             | Vce"L"                         |                        |                          |      |           | 0.3  | V                 |

Ver 1.1 4/18



#### ■ TYPICAL APPLICATION CIRCUIT



# **External Components List**

| Symbol          | Description                        |  |  |
|-----------------|------------------------------------|--|--|
| C <sub>IN</sub> | 1.0µF or more                      |  |  |
| Соит            | 1.0µF or more, 10µF is recommended |  |  |

#### APPLICATION INFORMATION

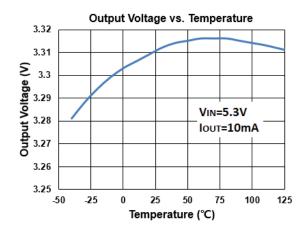
#### ■ Selection of Input/ Output Capacitors

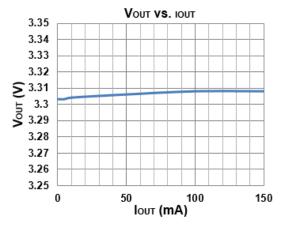
Phase compensation is provided to secure operation even when the load current is varied. For this purpose, use a 1.0 $\mu$ F or more output capacitor ( $C_{OUT}$ ) with good frequency characteristics and proper ESR (Equivalent Series Resistance). Connect a 1.0 $\mu$ F or more input capacitor ( $C_{IN}$ ) between the  $V_{IN}$  pin and the  $V_{SS}$  pin as close as possible to the pins.

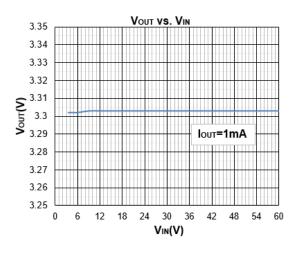
The value of the output overshoot or undershoot transient response varies depending on the value of the output capacitor.

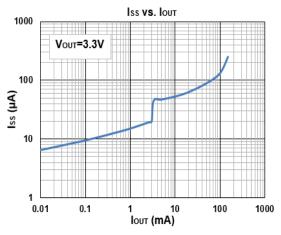
When selecting the output capacitor, perform sufficient evaluation, including evaluation of temperature characteristics, on the actual device.

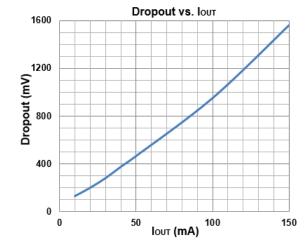
In the design of portable devices the ceramic capacitors are often chosen because of their small size, low equivalent series resistance (ESR) and high RMS current capability. Also, designers have been looking to ceramic capacitors due to shortages of tantalum capacitors.

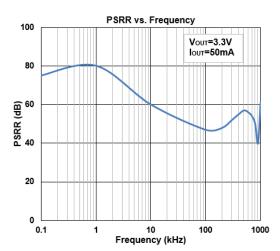

Unfortunately, using ceramic capacitors for input filtering can cause problems. Applying a voltage step to a ceramic capacitor causes a large current surge that stores energy in the inductances of the power leads. A large voltage spike is created when the stored energy is transferred from these inductances into the ceramic capacitor. These voltage spikes can easily be twice the amplitude of the input voltage step.


Many types of capacitors can be used for input bypassing, however, caution must be exercised when using multilayer ceramic capacitors (MLCC). Because of the self-resonant and high Q characteristics of some types of ceramic capacitors, high voltage transients can be generated under some start-up conditions, such as connecting the LDO input to a live power source. Adding a  $3\Omega$  resistor in series with an X5R ceramic capacitor will minimize start-up voltage transients.





# ■ TYPICAL PERFORMANCE CHARACTERISTICS


(Vce=Vin=Vout+2V, Cin=1 $\mu$ F, Cout=10 $\mu$ F , TA=25 $^{\circ}$ C, unless otherwise specified)

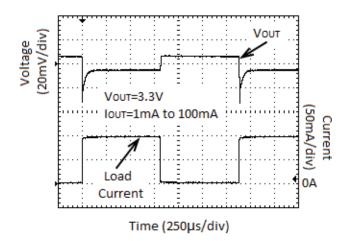


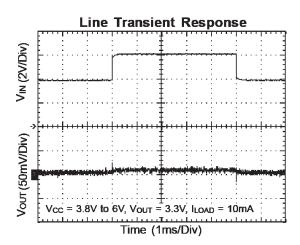


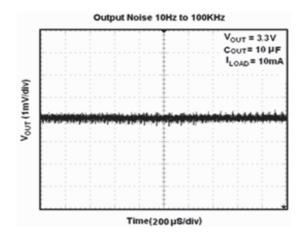








Ver 1.1 6/18

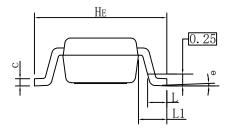


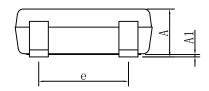

# **■ TYPICAL PERFORMANCE CHARACTERISTICS**

(Vce=Vin=Vout+2V, Cin=1 $\mu$ F, Cout=10 $\mu$ F , TA=25 $^{\circ}$ C, unless otherwise specified)









Ver 1.1 7/18

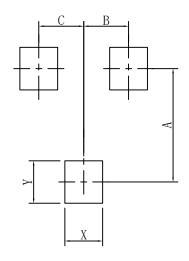


# ■ PACKAGING INFORMATION

# • SOT-23-3 PACKAGE OUTLINE DIMENSIONS





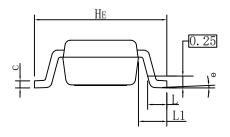


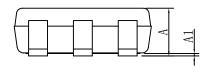

| DIM                  | MIN  | NOR     | MAX  |  |  |  |
|----------------------|------|---------|------|--|--|--|
| A                    | 0.90 | 1.00    | 1.10 |  |  |  |
| A1                   | 0.01 | 0.06    | 0.10 |  |  |  |
| b                    | 0.30 | 0.40    | 0.50 |  |  |  |
| С                    | 0.10 | 0.17    | 0.20 |  |  |  |
| D                    | 2.80 | 2.90    | 3.00 |  |  |  |
| Е                    | 1.50 | 1.60    | 1.70 |  |  |  |
| е                    | 1.80 | 1.90    | 2.00 |  |  |  |
| L                    | 0.20 | 0.40    | 0.60 |  |  |  |
| L1                   |      | 0.60REF |      |  |  |  |
| HE                   | 2.60 | 2.80    | 3.00 |  |  |  |
| θ                    | 0°   | _       | 10°  |  |  |  |
| All Dimensions in mm |      |         |      |  |  |  |

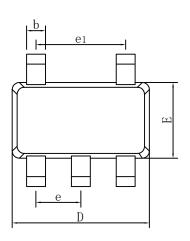
#### GENERAL NOTES

- 1.Top package surface finish RaO.4 $\pm$ 0.2um
- 2.Bottom package surface finish RaO.7 $\pm$ 0.2um
- 3. Side package surface finish RaO.  $4\pm0.2$ um

# • SOLDERING FOOTPRINT





| DIM | (mm)  |
|-----|-------|
| X   | 0.80  |
| Y   | 0.90  |
| A   | 2.40  |
| В   | 0.95  |
| С   | 0. 95 |

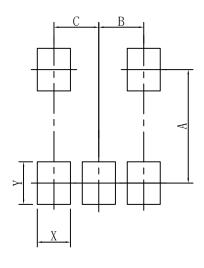

Ver 1.1 8/18



# • SOT-23-5 PACKAGE OUTLINE DIMENSIONS





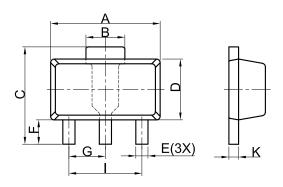



|     | S0T25   |      |      |  |  |  |  |
|-----|---------|------|------|--|--|--|--|
| DIM | MIN     | NOR  | MAX  |  |  |  |  |
| A   | 0.90    | 1.00 | 1.10 |  |  |  |  |
| A1  | 0.01    | 0.06 | 0.10 |  |  |  |  |
| b   | 0.30    | 0.40 | 0.50 |  |  |  |  |
| С   | 0.10    | 0.17 | 0.20 |  |  |  |  |
| D   | 2.80    | 2.90 | 3.00 |  |  |  |  |
| Е   | 1.50    | 1.60 | 1.70 |  |  |  |  |
| е   | 0.85    | 0.95 | 1.05 |  |  |  |  |
| е1  | 1.80    | 1.90 | 2.00 |  |  |  |  |
| L   | 0.20    | 0.40 | 0.60 |  |  |  |  |
| L1  | 0.60REF |      |      |  |  |  |  |
| HE  | 2.60    | 2.80 | 3.00 |  |  |  |  |
| θ   | 0°      | _    | 10°  |  |  |  |  |

#### GENERAL NOTES

- 1.Top package surface finish RaO.4 $\pm$ 0.2um
- 2.Bottom package surface finish RaO.7 $\pm$ 0.2um
- 3. Side package surface finish RaO.4 $\pm$ 0.2um

# • SOLDERING FOOTPRINT




| S   | S0T25 |  |  |
|-----|-------|--|--|
| DIM | (mm)  |  |  |
| X   | 0.70  |  |  |
| Y   | 0.90  |  |  |
| A   | 2.40  |  |  |
| В   | 0.95  |  |  |
| С   | 0.95  |  |  |

Ver 1.1 9/18



# • SOT-89-3 PACKAGE OUTLINE DIMENSIONS



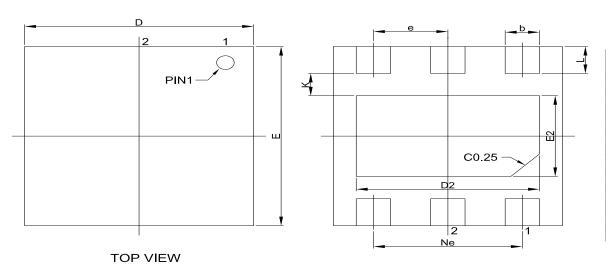


|                      | SOT89    |             |      |  |  |
|----------------------|----------|-------------|------|--|--|
| DIM                  | MIN      | MIN NOR MAX |      |  |  |
| Α                    | 4.30     | 4.50        | 4.70 |  |  |
| В                    | 1.40     | 1.60        | 1.80 |  |  |
| С                    | 3.90     | 4.00        | 4.25 |  |  |
| D                    | 2.30     | 2.50        | 2.70 |  |  |
| Е                    | 0.40     | 0.50        | 0.58 |  |  |
| F                    | 0.90     | 1.00        | 1.20 |  |  |
| G                    | 1.50 BSC |             |      |  |  |
| - 1                  | 3.00 BSC |             |      |  |  |
| J                    | 1.40     | 1.50        | 1.60 |  |  |
| K                    | 0.34     | 0.40        | 0.50 |  |  |
| All Dimensions in mm |          |             |      |  |  |

#### **GENERAL NOTES**

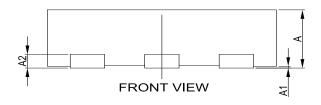
- 1. Top package surface finish Ra0.4±0.2um
- 2. Bottom package surface finish Ra0.7±0.2um
- 3. Side package surface finish Ra0.4±0.2um
- 4. Protrusion or Gate Burrs shall not exceed 0.10mm per side.

# • SOLDERING FOOTPRINT

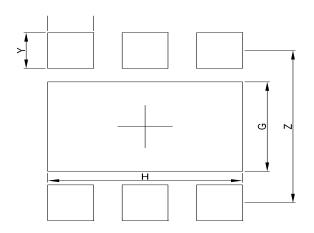



| SOT89    |      |  |
|----------|------|--|
| DIM (mm) |      |  |
| Х        | 0.80 |  |
| Υ        | 1.20 |  |
| X1       | 0.80 |  |
| Y1       | 2.20 |  |
| X2       | 2.00 |  |
| Y2       | 2.50 |  |
| С        | 1.50 |  |
| Y3       | 4.70 |  |

Ver 1.1 10/18




# • DFN2020-6 PACKAGE OUTLINE DIMENSIONS

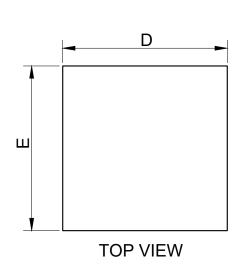


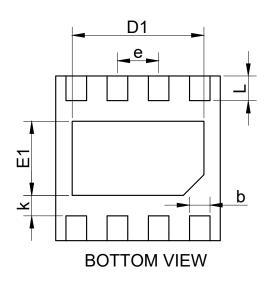

| DIM        | MILLIMETER |           |      |
|------------|------------|-----------|------|
| DIM        | MIN        | NOM       | MAX  |
| Α          | 0.60       | 0.65      | 0.70 |
| <b>A</b> 1 |            | 0.02      | 0.05 |
| $A_2$      | C          | .152RE    | F    |
| b          | 0.25       | 0.25 0.30 |      |
| D          | 1.95       | 2.00      | 2.05 |
| D2         | 1.50       | 1.60      | 1.70 |
| Ne         | 1.30BSC    |           |      |
| е          | C          | ).65BSC   |      |
| E          | 1.95       | 2.00      | 2.05 |
| E2         | 0.85       | 0.90      | 0.95 |
| Ĺ          | 0.25       | 0.30      | 0.35 |
| K          | 0.20       | 0.25      | 0.30 |

**BOTTOM VIEW** 

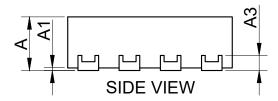


# • SOLDERING FOOTPRINT

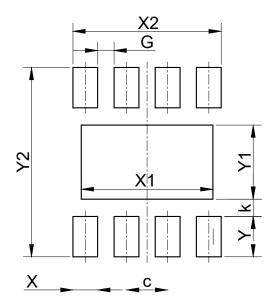




| Dimensions | (mm) |
|------------|------|
| G          | 1.00 |
| Н          | 1.70 |
| J          | 0.65 |
| X          | 0.40 |
| Y          | 0.40 |
| Z          | 1 70 |

Ver 1.1 11/18




# • DFN2020-8 PACKAGE OUTLINE DIMENSIONS

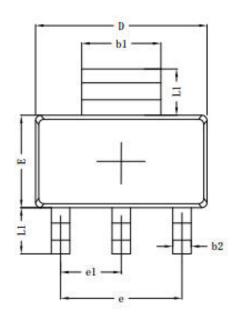


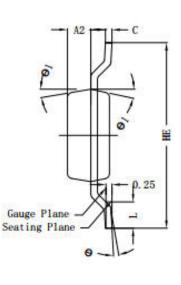



| D                    | DFN2020-8B(T0.65) |                |      |  |  |
|----------------------|-------------------|----------------|------|--|--|
| DIM                  | MIN               | MIN NOR MAX    |      |  |  |
| Α                    | 0.60              | 0.65           | 0.70 |  |  |
| A1                   | 0.01              | 0.03           | 0.05 |  |  |
| b                    | 0.20              | 0.25           | 0.30 |  |  |
| D                    | 1.95              | 2.00           | 2.05 |  |  |
| E                    | 1.95              | 2.00           | 2.05 |  |  |
| е                    | 0.50TYP.          |                |      |  |  |
| L                    | 0.25              | 0.25 0.30 0.35 |      |  |  |
| D1                   | 1.55 1.60 1.65    |                |      |  |  |
| E1                   | 0.85              | 0.90           | 0.95 |  |  |
| A3                   | 0.152REF.         |                |      |  |  |
| All Dimensions in mm |                   |                |      |  |  |

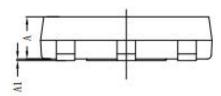


# • SOLDERING FOOTPRINT

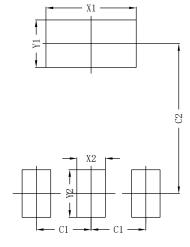




| DFN2020-8B(T0.65) |      |  |  |
|-------------------|------|--|--|
| DIM               | (mm) |  |  |
| С                 | 0.50 |  |  |
| G                 | 0.20 |  |  |
| k                 | 0.21 |  |  |
| X                 | 0.30 |  |  |
| X1                | 1.60 |  |  |
| X2                | 1.80 |  |  |
| Y                 | 0.49 |  |  |
| Y1                | 0.90 |  |  |
| Y2                | 2.30 |  |  |

Ver 1.1 12/18




# • SOT223 PACKAGE OUTLINE DIMENSIONS

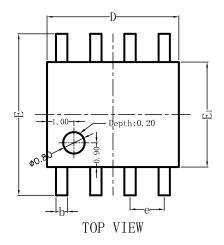




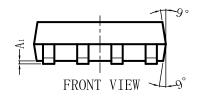

|     | SO                   | T223 |      |  |  |
|-----|----------------------|------|------|--|--|
| DIM | MIN NOR MAX          |      |      |  |  |
| Α   | 1.50                 | 1.60 | 1.70 |  |  |
| A1  | 0.00                 | 0.05 | 0.10 |  |  |
| A2  | 0.80                 | 0.90 | 1.00 |  |  |
| b1  | 2.90                 | 3.02 | 3.10 |  |  |
| b2  | 0.60                 | 0.72 | 0.80 |  |  |
| С   | 0.20                 | 0.27 | 0.30 |  |  |
| D   | 6.30                 | 6.50 | 6.70 |  |  |
| E   | 3.30                 | 3.50 | 3.70 |  |  |
| e   | 4.60BSC              |      |      |  |  |
| e1  | 2,30BSC              |      |      |  |  |
| HE  | 6.80                 | 7.00 | 7.20 |  |  |
| L   | 0.80                 | 1.00 | 1.20 |  |  |
| L1  | 1.75(REF)            |      |      |  |  |
| θ   | 00-80                |      |      |  |  |
| θ1  | 80                   | 10°  | 12°  |  |  |
|     | All Dimensions in mm |      |      |  |  |

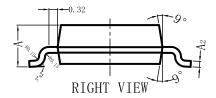


# Suggested Pad layout

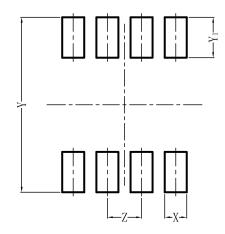



| SOT223 |      |  |  |
|--------|------|--|--|
| DIM    | (mm) |  |  |
| X1     | 3.80 |  |  |
| Y1     | 2.00 |  |  |
| X2     | 1.20 |  |  |
| Y2     | 2.00 |  |  |
| C1     | 2.30 |  |  |
| C2     | 6.30 |  |  |


Ver 1.1 13/18




# • SOP-8 PACKAGE OUTLINE DIMENSIONS




| SOP8 (Unit:mm) |                |             |      |  |  |  |
|----------------|----------------|-------------|------|--|--|--|
| Dim            | Min            | Min Typ Max |      |  |  |  |
| A              | 1.35           | 1.55        | 1.75 |  |  |  |
| A1             | 0.06           | 0.06 0.16   |      |  |  |  |
| A2             | 0.19 0.22      |             | 0.25 |  |  |  |
| b              | 0.33           | 0.51        |      |  |  |  |
| D              | 4.80 4.90 5.00 |             |      |  |  |  |
| Е              | 5.80 6.00 6.20 |             |      |  |  |  |
| E1             | 3.80 3.90 4.00 |             |      |  |  |  |
| е              | e 1. 27BSC     |             |      |  |  |  |



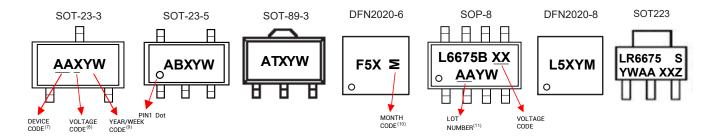


# • SOLDERING FOOTPRINT



| Dimensions | (mm)   |
|------------|--------|
| X          | 0.820  |
| Y          | 6. 500 |
| Y1         | 1.500  |
| Z          | 1. 270 |

Ver 1.1 14/18




#### ■ ORDER INFORMATION APPENDIX

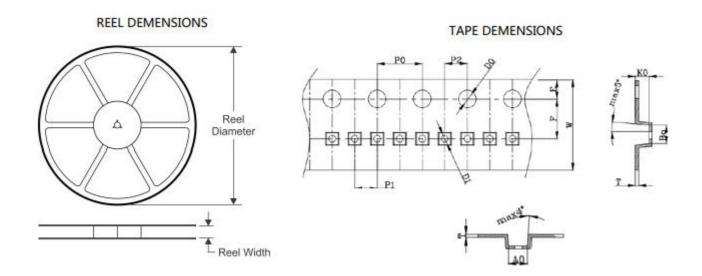
| Device <sup>(4)</sup> | Output Voltage <sup>(5)</sup> | Package  | Marking <sup>(6)</sup> | Shipping |
|-----------------------|-------------------------------|----------|------------------------|----------|
| LR6675AxxM            | 1.2V~12V                      | SOT-23-3 | AAX                    | 3K/Reel  |
| LR6675AxxMC           | 1.2V~12V                      | SOT-23-3 | ACX                    | 3K/Reel  |
| LR6675AxxMY           | 1.2V~12V                      | SOT-23-3 | AYX                    | 3K/Reel  |
| LR6675BxxM            | 1.2V~12V                      | SOT-23-5 | ABX                    | 3K/Reel  |
| LR6675BxxMK           | 1.2V~12V                      | SOT-23-5 | AKX                    | 3K/Reel  |
| LR6675AxxP            | 1.2V~12V                      | SOT-89-3 | ADX                    | 5K/Reel  |
| LR6675AxxPL           | 1.2V~12V                      | SOT-89-3 | ALX                    | 5K/Reel  |
| LR6675AxxPT           | 1.2V~12V                      | SOT-89-3 | ATX                    | 5K/Reel  |
| LR6675AxxP1           | 1.2V~12V                      | SOT-89-3 | AZX                    | 5K/Reel  |
| LR6675AxxPT1          | 1.2V~12V                      | SOT-89-3 | AWX                    | 5K/Reel  |
| LR6675BxxFT           | 1.2V~12V                      | DFN202-6 | F5X                    | 4K/Reel  |
| LR6675BxxFL           | 1.2V~12V                      | DFN202-8 | L5X                    | 3K/Reel  |
| LR6675AxxS            | 1.2V~12V                      | SOP-8    | L6675S                 | 4K/Reel  |
| LR6675BxxX            | 1.2V~12V                      | SOP-8    | L6675B                 | 4K/Reel  |

- (4) The "xx" in part number represents output voltage, eg "18" = 1.8V, "50" = 5.0V.
- (5) Output voltage varies from 1.2V to 12.0V, 0.1V an interval.
- (6) There are additional marking, which relates to the date code. For detailed information, please refer to MARKING INFORMATION APPENDIX below.

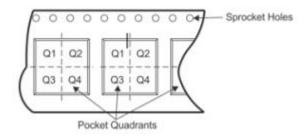
#### ■ MARKING INFORMATION APPENDIX



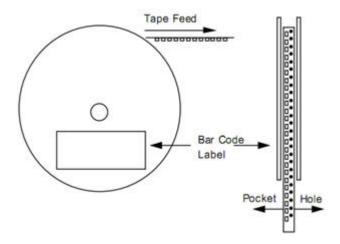
- (7) The first two letters in the Marking represent DEVICE CODE.
- (8) The following letter "X" in the Marking changes along with the output voltage, as the chart shows below.


| Voltage(V) | 1.2 | 1.5 | 1.8 | 2.5 | 2.5 (1%) | 2.7 | 2.8 | 3.0 | 3.0 (1%) | 3.3 | 3.3 (1%) | 3.6 | 4.0 | 5.0 | 5.0 (1%) | 12.0 |
|------------|-----|-----|-----|-----|----------|-----|-----|-----|----------|-----|----------|-----|-----|-----|----------|------|
| Symbol     | Е   | F   | G   | Н   | Х        | ı   | J   | К   | В        | L   | Q        | М   | Ν   | Р   | m        | S    |

For SOP-8 packages, the VOLTAGE CODE is a two-digit or three-digit number changing along with the output voltage. For example, 18 = 1.8V, 33 = 3.3V, 50 = 5.0V, etc.


- (9) The last two letters in the Marking represent YEAR/WEEK CODE or YEAR/MONTH CODE.
- (10) For DFN2020-6 packages, the last letter in the Marking represents the MONTH CODE (Rotated 90° counter-clockwise).
- (11) The LOT NUMBER is only used for internal production control of the factory.




# ■ TAPE AND REEL INFORMATION



#### PIN ORIENTATION



#### **ROLLING ORIENTATION**



Ver 1.1 16/18





| Device      | Package  | Reel           | Reel    | P0       | P1       | A0        | В0        | K0       | W       | PIN1 |
|-------------|----------|----------------|---------|----------|----------|-----------|-----------|----------|---------|------|
|             |          | Diameter       | width   | (mm)     | (mm)     | (mm)      | (mm)      | (mm)     | (mm)    |      |
|             |          | (mm)           | (mm)    |          |          |           |           |          |         |      |
| LR6675AxxM  | SOT-23-3 | 178 <u>±</u> 1 | 9.6±1.2 | 4.00±0.1 | 4.00±0.1 | 3.1±0.1   | 3.28±0.1  | 1.32±0.1 | 8.0±0.1 | NA   |
| LR6675AxxMC | SOT-23-3 | 178±1          | 9.6±1.2 | 4.00±0.1 | 4.00±0.1 | 3.1±0.1   | 3.28±0.1  | 1.32±0.1 | 8.0±0.1 | NA   |
| LR6675AxxMY | SOT-23-3 | 178 <u>±</u> 1 | 9.6±1.2 | 4.00±0.1 | 4.00±0.1 | 3.1±0.1   | 3.28±0.1  | 1.32±0.1 | 8.0±0.1 | NA   |
| LR6675BxxM  | SOT-23-5 | 178 <u>±</u> 1 | 9.6±1.2 | 4.00±0.1 | 4.00±0.1 | 3.25±0.05 | 3.15±0.05 | 1.5±0.05 | 8.0±0.1 | Q3   |
| LR6675BxxMK | SOT-23-5 | 178±1          | 9.6±1.2 | 4.00±0.1 | 4.00±0.1 | 3.25±0.05 | 3.15±0.05 | 1.5±0.05 | 8.0±0.1 | Q3   |

Ver 1.1 17/18



# **■ REVISION HISTORY**

| Version | Description                                             | Update by | Update Date |
|---------|---------------------------------------------------------|-----------|-------------|
| 0.7     | 增加 <b>12V</b> 电压点对应的marking代码                           | Chen S    | 2023-02-23  |
| 0.8     | 增加LR6675BxxMK产品型号以及对应marking                            | Chen S    | 2023-12-01  |
| 0.9     | 增加LR6675BxxFT/ LR6675BxxX/LR6675AxxS<br>产品型号以及对应marking | Chen S    | 2024-02-26  |
| 1.0     | 增加LR6675BxxFL产品型号以及对应marking                            | Chen S    | 2024-06-12  |
| 1.1     | SOT89包装数量由1K/卷更新为5K/卷 .<br>SOT223包装数量由1K/卷更新为4K/卷.      | Chen S    | 2024-08-27  |



# **DISCLAIMER**

- Curve guarantee in the specification. The curve of test items with electric parameter is used as quality guarantee. The curve of test items without electric parameter is used as reference only.
- Before you use our Products for new Project, you are requested to carefully read this document and fully understand its contents. LRC shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any LRC's Products against warning, caution or note contained in this document.
- All information contained in this document is current as of the issuing date and subject to change without any prior notice. Before purchasing or using LRC's Products, please confirm the latest information with a LRC sales representative.

# 单击下面可查看定价,库存,交付和生命周期等信息

# >>LRC(乐山无线电)