

GLF72525, GLF72525T Ultra-Low Current Consumption N-channel Power Load Switch with Low Input Voltage Range and Reverse Current Blocking

Product Specification

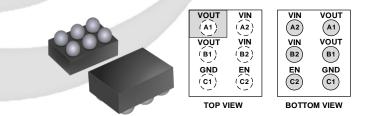
DESCRIPTION

The GLF72525 and GLF72525T Load Switch are fully integrated 4 A NMOS load switches with I_QSmart^{TM} advanced technology. The device is targeted for the mobile computing and data storage markets as a high-performance solution for load switch applications.

The GLF72525 and GLF72525T have a constant low on-resistance of 9.0 m Ω at the full input voltage range. The fixed rise time helps prevent undesirable inrush current when turned on and the internal EN pin pulldown resistor ensures the device remains in the shutdown mode when disabled. In shutdown mode the GLF72525 and GLF72525T draw only 14 nA typical at 3.6 V input supply voltage.

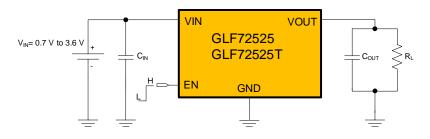
The GLF72525 and GLF72525T feature a reverse current blocking protection, when GLF72525 and GLF72525T are disabled. This function can prevent reverse current flowing from the output to the input source.

The GLF72525 is available in a wafer level chip scale package (WLCSP). The GLF72525T is in a thin WLCSP in a 0.35 mm typical thickness. It allows the user to save board space and increase cost savings.


FEATURES

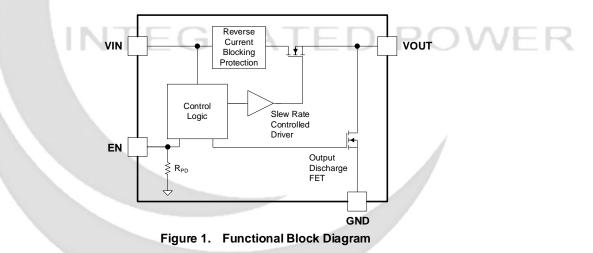
- Supply Voltage Range: 0.7 V to 3.6 V
- Low R_{ON}: 9.0 mΩ Typ
- IOUT Max: 4 A
- Ultra-Low I_Q:
 - $\circ~~$ 5.6 μA Typ at 0.7 V_{IN}
 - \circ ~ 3.8 μA Typ at 0.8 V_{IN}
 - ο 8.8 μΑ Typ at 3.6 V_{IN}
- Ultra-Low I_{SD}: 14 nA Typ @ 3.6 V_{IN}
- Controlled VOUT Turn-on Time
 - \circ ~ 111 μs at 0.7 V_{IN}
 - \circ ~ 113 μs at 0.8 V_{IN}
 - ο 87 μs at 3.6 V_{IN}
- Internal EN Pull-Down Resistor
- Integrated Output Discharge Switch
- Reverse Current Blocking Protection When Disabled
- Operating Temperature Range: 40 °C to 105 °C
- HBM: 8 kV, CDM: 2 kV

APPLICATIONS

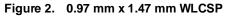

- Data Storage, SSD
- Wearables
- Low Power Subsystems

PACKAGE

0.97 mm x 1.47 mm WLCSP


APPLICATION DIAGRAM

DEVICE ORDERING INFORMATION


Part Number	Top Mark	R _{on} Typ. at Vin Range	Output Discharge	EN Activity	Package
GLF72525	FJ	0.0 m0	95.0	Lligh	0.97 mm x 1.47 mm x 0.55 mm WLCSP
GLF72525T	FO	9.0 mΩ 85 Ω	05 12	High	0.97 mm x 1.47 mm x 0.35 mm Thin WLCSP

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

$\begin{array}{c} VOUT\\ (A1)\\ VOUT\\ (B1)\\ GN(C1)\\ \end{array}$	$ \begin{array}{c} V(\begin{array}{c} A2 \\ A2 \end{array}) \\ V(\begin{array}{c} B2 \\ B2 \end{array}) \\ V(\begin{array}{c} B2 \\ B2 \end{array}) \\ E(\begin{array}{c} C2 \\ C2 \end{array}) \\ \end{array} $		VIN A2 VIN B2 EN C2	VOUT A1 VOUT B1 GND C1	
TOP VIEW			BOTTO	OM VIEW	

PIN DEFINITION

Pin #	Name	Description
A1, B1	VOUT	Switch Output
A2, B2	VIN	Switch Input. Supply Voltage for IC
C1	GND	Ground
C2	EN	Enable to control the switch

GLF72525, GLF72525T Ultra-Low Current Consumption N-channel Power Load Switch INTEGRATED POWER with Low Input Voltage Range and Reverse Current Blocking

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Max.	Unit
Vin, Vout, Ven	Each Pin Voltage Range to GND			4	V
Ιουτ	Maximum Continuous Switch Cu	Maximum Continuous Switch Current			А
PD	Power Dissipation at $T_A = 25^{\circ}C$			1.2	W
Tstg	Storage Junction Temperature			150	°C
θյΑ	Thermal Resistance, Junction to Ambient			85	°C/W
L S D	Electrostatic Discharge Capability	Human Body Model, JESD22-A114	8		k) /
ESD		Charged Device Model, JESD22-C101	2		kV

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
VIN	Supply Voltage	0.7	3.6	V
TA	Ambient Operating Temperature	-40	+105	°C

GLF72525, GLF72525T Ultra-Low Current Consumption N-channel Power Load Switch

INTEGRATED POWER with Low Input Voltage Range and Reverse Current Blocking

ELECTRICAL CHARACTERISTICS

GLF

 $V_{IN} = 0.7$ V to 3.6 V and $T_A = 25$ °C unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
Basic Oper	ation		1	1			
		$EN = Enable$, $I_{OUT} = 0$ mA, $V_{IN} = 0.7$ V		5.6		_	
		EN = Enable, Iout = 0 mA, V _{IN} = 0.8 V		3.8		μA	
		EN = Enable, lout = 0 mA, V _{IN} = 1.5 V		3.1			
lq	Quiescent Current	$EN = Enable$, $I_{OUT} = 0$ mA, $V_{IN} = 2.5$ V		5.1			
· · · ·		EN = Enable, I _{OUT} = 0 mA, V _{IN} = 3.0 V		6.5			
		$EN = Enable$, $I_{OUT} = 0$ mA, $V_{IN} = 3.6$ V		8.8			
		$EN = Enable$, $I_{OUT} = 0$ mA, $V_{IN} = 3.6$ V, $T_A = 85$ °C		16			
		$EN = Enable$, $I_{OUT} = 0$ mA, $V_{IN} = 3.6$ V, $T_A = 105$ °C		39			
		$EN = Disable$, $I_{OUT} = 0 \text{ mA}$, $V_{IN} = 0.7 \text{ V}$		6	20		
		$EN = Disable$, $I_{OUT} = 0 \text{ mA}$, $V_{IN} = 0.8 \text{ V}$		6			
		EN = Disable, I _{OUT} = 0 mA, V _{IN} = 1.5 V		7			
lan	Shutdown Current	EN = Disable, $I_{OUT} = 0$ mA, $V_{IN} = 2.5$ V		8		nA	
Isd	Shutdown Current	EN = Disable, I _{OUT} = 0 mA, V _{IN} = 3.0 V		9			
		EN = Disable, I _{OUT} = 0 mA, V _{IN} = 3.6 V		14	35		
		EN = Disable, I _{OUT} = 0 mA, V _{IN} = 3.6 V, T _A = 85 °C		550			
		EN = Disable, I _{OUT} = 0 mA, V _{IN} = 3.6 V, T _A = 105 °C		2.1		μA	
	On-Resistance	T _A = 25 °C		9	12	mΩ	
Ron		V _{IN} = 0.7 V to 3.6 V T _A = 85 °C	10	10			
		$I_{OUT} = 300 \text{ mA}$ $T_{A} = 105 \text{ °C}$		11	_		
RDSC	Output Discharge Resistance	EN= Low, IFORCE= 10 mA		85		Ω	
		V _{IN} = 0.7 V to 1.5 V	0.7			V	
Vін	EN Input Logic High Voltage	V _{IN} = 1.5 V to 3.6 V				V	
		V _{IN} = 0.7 V to 1.5 V	7		0.15	V	
Vı∟	EN Input Logic Low Voltage	V _{IN} = 1.5 V to 3.6 V	1		0.4	V	
Ren	EN pull down resistance	V _{EN} = 3.3 V		10		MΩ	
Switching (Characteristics (1)			I			
		$V_{IN} = 0.7 V$		40			
		V _{IN} = 0.8 V		52		-	
t dON	Turn-On Delay Time	V _{IN} = 1.2 V		48			
	$R_{OUT} = 10 \Omega$, $C_{OUT} = 5.0 \mu F$	V _{IN} = 2.5 V		14			
		V _{IN} = 3.6 V		5		-	
		V _{IN} = 0.7 V		71		-	
		V _{IN} = 0.8 V		61		μs	
t _R	Vout Rise Time	$V_{IN} = 1.2 V$		65			
	Rout = 10 Ω , Cout = 5.0 μ F	$V_{\rm IN} = 1.2 \text{ V}$ $V_{\rm IN} = 2.5 \text{ V}$		77		 	
		$V_{\rm IN} = 2.5 V$ $V_{\rm IN} = 3.6 V$		82			
		$V_{\rm IN} = 0.7 V$		8		-	
		$V_{\rm IN} = 0.8 \text{ V}$		4			
tdOFF	Turn-Off Delay Time	$V_{\rm IN} = 0.0 V$		3		1	
UUFF	Rout = 10 Ω, Cout = 5.0 μF	$V_{\rm IN} = 2.5 \text{ V}$		3		-	
		$V_{IN} = 2.5 V$ $V_{IN} = 3.6 V$			3		
		V IN – 3.0 V		3		1	

GLF72525, GLF72525T Ultra-Low Current Consumption N-channel Power Load Switch INTEGRATED POWER with Low Input Voltage Range and Reverse Current Blocking

ELECTRICAL CHARACTERISTICS (continued)

 V_{IN} = 0.8 V to 3.6 V and T_{A} = 25 °C unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units		
Switching	Switching Characteristics (1) (continued)							
	Vout Fall Time Rout = 10 Ω, Cout = 5.0 μF	$V_{IN} = 0.7 V$		86				
		V _{IN} = 0.8 V		82				
t⊧		V _{IN} = 1.2 V		91		μs		
		$V_{IN} = 2.5 V$		99				
		V _{IN} = 3.6 V		105				

Notes: 1. By design; characterized, not production tested. $t_{ON} = t_{dON} + t_R$, $t_{OFF} = t_{dOFF} + t_F$

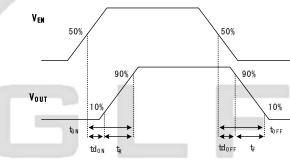


Figure 3. Timing Diagram

TYPICAL PERFORMANCE CHARACTERISTICS

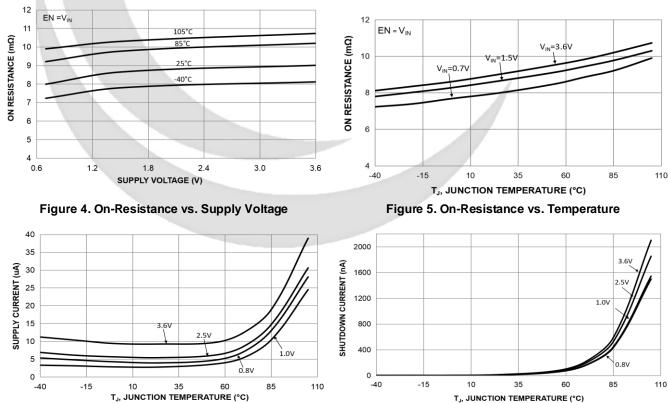
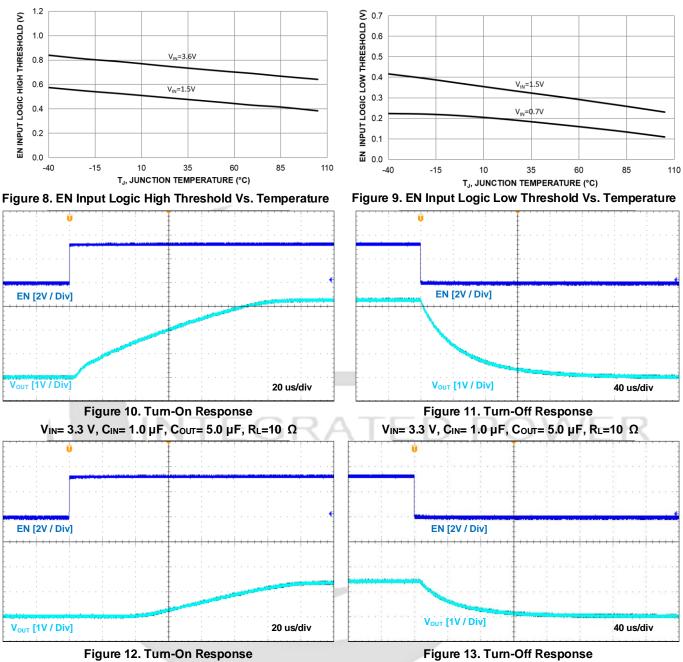
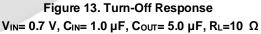



Figure 6. Quiescent Current vs. Temperature


Figure 7. Shutdown Current vs Temperature

GLF72525, GLF72525T **Ultra-Low Current Consumption N-channel Power Load Switch** INTEGRATED POWER with Low Input Voltage Range and Reverse Current Blocking

 $V_{IN}= 0.7 V, C_{IN}= 1.0 \mu F, C_{OUT}= 5.0 \mu F, R_{L}=10 \Omega$

GLF72525, GLF72525T Ultra-Low Current Consumption N-channel Power Load Switch

INTEGRATED POWER with Low Input Voltage Range and Reverse Current Blocking

APPLICATION INFORMATION

The GLF72525 and GLF72525T are a fully integrated 4 A NMOS load switch with fixed slew rate control to limit the inrush current during turn on. Each device is capable of operating over a wide input range with very low on-resistance to reduce conduction loss. In the off state, these devices consume very low leakage current, avoiding unwanted standby current from the input power supply. The GLF72525 and GLF72525T are available in the 0.97 mm x 1.47 mm wafer level chip scale package with 6 bumps at 0.5 mm pitch to save space in compact applications.

Input Capacitor

A capacitor is recommended to be placed close to the V_{IN} pin to reduce the voltage drop on the input power rail caused by transient inrush current at start-up. A higher input capacitor value can be used to further attenuate the input voltage drop.

Output Capacitor

An output capacitor is recommended to minimize voltage undershoot on the output pin during the transition when the switch is turned off. Undershoot can be caused by parasitic inductance from board traces or intentional load inductances. If load inductances do exist, use of an output capacitor can improve output voltage stability and system reliability. The C_{OUT} capacitor should be placed close to the VOUT and GND pins.

Reverse Current Blocking

The GLF72525 and GLF72525T have a built-in reverse current blocking protection, when the device is disabled. The reverse current blocking protection is activated to prevent the reverse current from the VOUT to the VIN source.

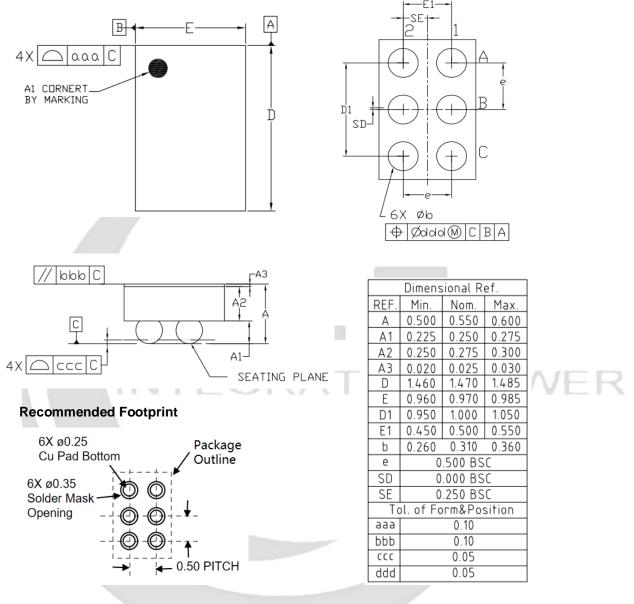
EN pin

The GLF72525 and GLF72525T can be activated by EN pin high. Note that the EN pin has an internal pulldown resistor to maintain a reliable status without EN signal applied from an external controller.

Output Discharge Function

The GLF72525 and GLF72525T have an internal discharge N-channel FET switch on the VOUT node. When EN signal turns the main power FET to an off state, the N-channel switch turns on to discharge an output capacitor quickly.

Board Layout


All traces should be as short as possible to minimize parasitic inductance effect. Wide traces for VIN, VOUT, and GND will help reduce signal degradation and parasitic effects during dynamic operations as well as improve the thermal performance at high load current.

GLF72525, GLF72525T **Ultra-Low Current Consumption N-channel Power Load Switch** with Low Input Voltage Range and Reverse Current Blocking INTEGRATED POWER

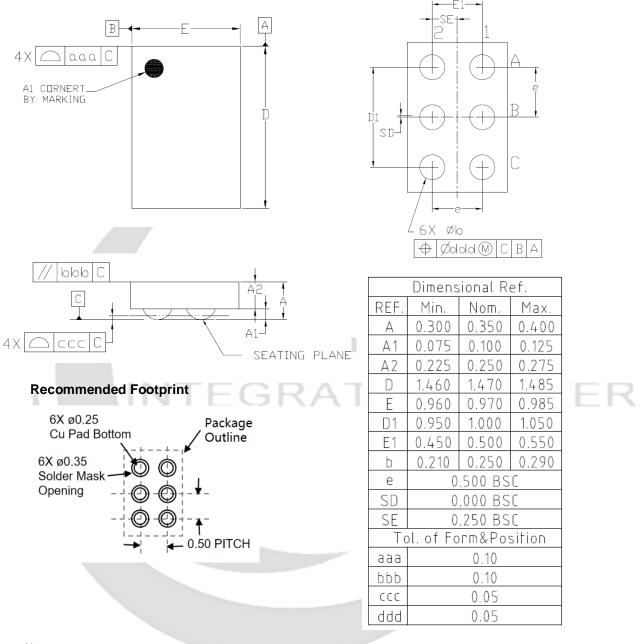
PACKAGE OUTLINE

GLF72525

GLF

Notes

1. ALL DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGRESS)


2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.

3. A3: BACKSIDE LAMINATION

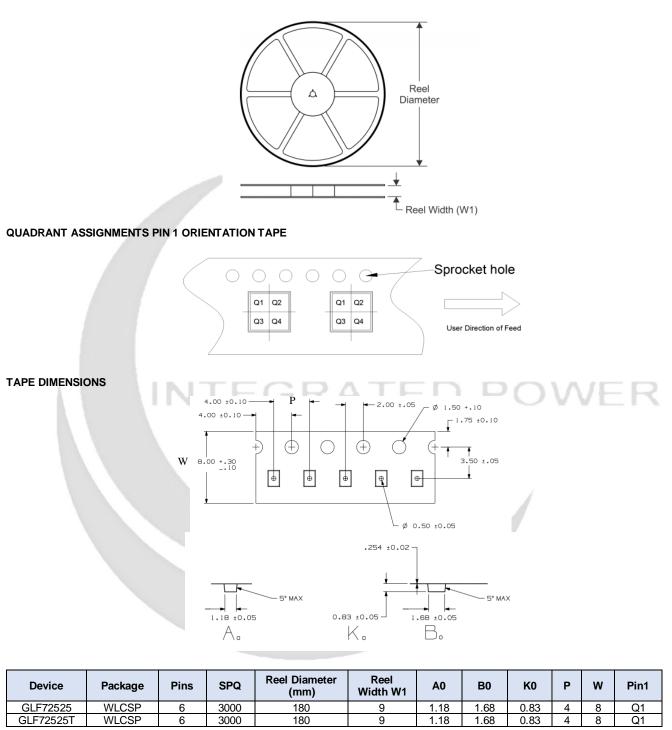
GLF72525, GLF72525T Ultra-Low Current Consumption N-channel Power Load Switch with Low Input Voltage Range and Reverse Current Blocking

GLF72525T

Notes

1. ALL DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGRESS)

2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.


3. A3: BACKSIDE LAMINATION

GLF72525, GLF72525T Ultra-Low Current Consumption N-channel Power Load Switch INTEGRATED POWER with Low Input Voltage Range and Reverse Current Blocking

TAPE AND REEL INFORMATION

REEL DIMENSIONS

GLF

Remark:

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P: Pitch between successive cavity centers

GLF72525, GLF72525T

Ultra-Low Current Consumption N-channel Power Load Switch

INTEGRATED POWER with Low Input Voltage Range and Reverse Current Blocking

SPECIFICATION DEFINITIONS

Document Type	Meaning	Product Status
Target Specification		
Preliminary Specification	Change the energineation at any time without warning or potitication. A	
Product Specification		

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, mis-use, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.

单击下面可查看定价,库存,交付和生命周期等信息

>>GLF(杰夫微)