

		Date: 2023	/03/14	
	Custo	mer :		_
	TAI-TECH P/N:	THMC0421S	PV-Series(G)-H	D
	CUSTOMER P/N:			
	DESCRIPTION:			
	QUANTITY:		pcs	
REI	MARK:			
	Cı	ustomer Approval	Feedback	
西北臺慶科技股份有限公司 TAI-TECH Advanced Elec <u>Headquarter:</u> NO.1 YOU 4TH ROAD, YOUTH IN TAO-YUAN HSIEN, TAIWAN, R.O TEL: +886-3-4641148 FAX: +88 http://www.tai-tech.com.tw	tronics Co., Ltd DUSTRIAL DISTRICT, YAN .C.	G-MEI,	Sales Dep.	CHECKED
E-mail: sales@tai-tech.com.tw 臺慶精密電子(昆山)有限公 TALTECH ADV/ANCED FLE			Eric Kuan	Zhang mengmeng

TAI-TECH ADVANCED ELECTRONICS (KUNSHAN) CO., LTD SHINWHA ROAD, KUNJIA HI-TECH INDUSTRIAL PARK, KUN-SHAN, JIANG-SU, CHINA TEL: +86-512-57619396 FAX: +86-512-57619688

■ 慶邦電子元器件(泗洪)有限公司 TAIPAQ ELECTRONICS (SIHONG) CO., LTD JIN SHA JIANG ROAD, CONOMIC DEVELOPMENT ZONE SIHONG, JIANGSU, CHINA. TEL: +86-527-88601191 FAX: +86-527-88601190 E-mail: sales@taipaq.cn

E-mail: sales@tai-tech.cn

R&D Center

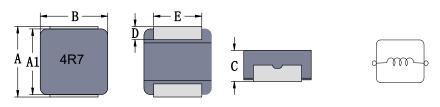
APPROVED	CHECKED	DRAWN
Sky Luo	Mr.Liang	Cui lingling

SMD Power Inductor

THMC0421SPV-Series(G)-HD

		ECN HIST	ORY LIST		
REV	DATE	DESCRIPTION	APPROVED	CHECKED	DRAWN
1.0	23/03/14	New Issue	Sky Luo	Mr.Liang	Cui lingling
/#:					
備					
注					

SMD Power Inductor


1. Features

- 1. Low loss realized with low DCR.
- 2. High performance realized by metal dust core.
- 3. Ultra low buzz noise, due to composite construction.
- 4. 100% Lead(Pb)-Free and RoHS compliant.
- 5. High reliability -Reliability test complied to AEC-Q200.

2. Applications

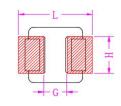
Automotive applications.

3. Dimensions

Series	Α	A1	В	С	D	E
THMC0421SP	4.3±0.3	4.1±0.3	4.2±0.2	1.9±0.2	0.8±0.3	3.0±0.2

Unit:mm

4. Part Numbering


тнмс	0421	SPV	-	4 R7	MG	-HD
А	В	С		D	Е	F
A: Series B: Dimen C: Type D: Inducta E: Inducta	sion	nce	4R7 M=±	idard. =4.7uH :20% king: Black.	4R7	
F:Code						

AEC-Q200

THMC0421SPV-Series(G)-HD

Recommend PC Board Pattern

2.2	3.5	
ut is referr	ed to standard	IPC-7351B
ve PCB la	yout reference	e only.
	ut is referr	2.2 3.5 ut is referred to standard ve PCB layout reference

3. Recommend solder paste thickness at 0.12mm and above.

5. Specification

Part Number	Inductance L0 A(uH)	Irr	ns(A)	I sat	t(A)	DCR(mΩ)		Impulse Chroma
Fait Number	±20%	Тур	Max	Тур	Max	Тур	Max	19301/19301A
THMC0421SPV-R10MG-HD	0.10	19.0	18.0	35.0	32.0	1.9	2.3	50V
THMC0421SPV-R15MG-HD	0.15	16.5	15.0	29.0	26.0	3.1	3.8	50V
THMC0421SPV-R22MG-HD	0.22	16.0	14.0	18.0	16.0	3.3	4.0	50V
THMC0421SPV-R33MG-HD	0.33	15.0	13.0	15.0	13.0	5.0	5.8	50V
THMC0421SPV-R47MG-HD	0.47	13.0	11.0	13.0	11.0	6.0	7.2	50V
THMC0421SPV-R56MG-HD	0.56	12.0	10.5	12.0	10.5	6.8	8.2	50V
THMC0421SPV-R68MG-HD	0.68	11.0	10.0	11.0	10.0	8.2	9.9	50V
THMC0421SPV-1R0MG-HD	1.0	10.0	9.5	10.0	9.5	11.5	13.8	50V
THMC0421SPV-1R5MG-HD	1.5	9.0	8.0	9.0	8.0	15.4	18.5	50V
THMC0421SPV-2R2MG-HD	2.2	7.2	6.5	7.2	6.5	25.0	30.0	50V
THMC0421SPV-3R3MG-HD	3.3	5.5	5.0	6.9	6.2	41.0	49.2	50V
THMC0421SPV-4R7MG-HD	4.7	4.7	4.1	5.8	5.2	60.0	69.0	50V
THMC0421SPV-5R6MG-HD	5.6	4.1	3.5	4.3	3.7	68.0	78.2	30V
THMC0421SPV-6R8MG-HD	6.8	3.8	3.3	3.9	3.4	80.5	92.5	30V
THMC0421SPV-8R2MG-HD	8.2	3.3	3.0	3.5	3.1	105.0	121.0	30V
THMC0421SPV-100MG-HD	10.0	3.1	2.9	3.3	3.0	126.0	145.0	30V
THMC0421SPV-120MG-HD	12.0	2.7	2.4	2.7	2.4	140.0	161.0	30V
THMC0421SPV-150MG-HD	15.0	2.4	2.1	2.4	2.1	165.0	190.0	30V

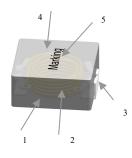
Note:

1. Test frequency : Ls : 100KHz /1.0V.

2. All test data referenced to $25\,^\circ\!\!\mathbb{C}$ ambient.

3. Testing Instrument(or equ) : Agilent 4284A, E4991A, 4339B, KEYSIGHT E4980A/AL, chroma3302, 3250, 16502.

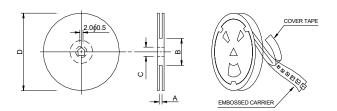
4. Heat Rated Current (Irms) will cause the coil temperature rise approximately $~\vartriangle\,T$ of 40 $^\circ\!C$


5. Saturation Current (Isat) will cause L0 to drop approximately 30%.

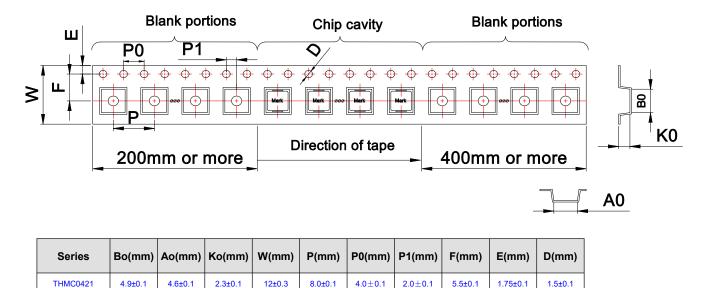
6. The part temperature (ambient + temp rise) should not exceed 150°C under worst case operating conditions. Circuit design, component, PCB trace size and thickness, airflow and other cooling provisions all affect the part temperature. Part temperature should be verified in the end application.

7. Irms Testing : Temperature rise is highly dependent on many factors including pcb land pattern, trace size, and proximity to other components. Therefore temperature rise should be verified in application conditions.

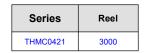
8. Rated DC current: The lower value of Irms and Isat.


6. Material List

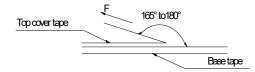
NO	Items	Materials
1	Core	Metal Powder
2	Wire	Polyester Wire or equivalent.
3	Clip	100% Pb free solder(Ni+SnPlating)
4	paint	Epoxy resin
5	Ink	Halogen-free ketone


7. Packaging Information

(1) Reel Dimension



Туре	A(mm)	B(mm)	C(mm)	D(mm)
13"x12mm	12.4+2/-0	100±2	13+0.5/-0.2	330±0.3


(2) Tape Dimension

(3) Packaging Quantity

(4) Tearing Off Force

The force for tearing off cover tape is 10 to 130 grams in the arrow direction under the following conditions(referenced ANSI/EIA-481-D-2008 standard).

Tearing Speed	Room Temp.	Room Humidity	Room atm
mm	(°C)	(%)	(hPa)
300±10%	5~35	45~85	860~1060

8. Reliability and Test Condition

	Item	Performance	Test	Condition		
Opera	ating temperature	-55~+150°C(Including self - temperature rise)		NA		
	ge temperature and dity range	110~+40°C, 50~60%RH (Product with taping) 255~+150°C(on board)		NA		
Elec	trical Performance Test	1				
Induc	tance	Refer to standard electrical characteristics list.	HP4284A, CH11025, CH3302, CH13	20, CH1320S LCR Meter.		
DCR			CH16502, Agilent33420A Micro-Ohm	Meter.		
Saturation Current (Isat) Approximately △L30% Heat Rated Current (Irms) Approximately △T40℃		Approximately △L30%	Saturation DC Current (Isat) will caus	e L0 to drop $ riangle$ L(%).		
Heat	Rated Current (Irms)	Approximately △T40℃	Heat Rated Current (Irms) will cause 1. Applied the allowed DC current. 2. Temperature measured by digital s		Г(°С).	
Relia	ability Test(For AEC-Q2	200-E)				
8.1	Pre- and Post-Stress Electrical Test	User Specification	Test is performed at room temperatur reference and the additional requirem Preconditioning : run through reflow fr (IPC/JEDECJ-STD-020F Classification	ents in this Table (e.g. 8.3, or 3 times.		
8.2	High Temperature Exposure(Storage) Reference MIL-STD-202 Method 108		Unpowered, Temperature : 150±2°C Upper Temperature: maximum specified operating temperature or maximur specified storage temperature (whichever is higher). Duration : 1000hrs Min. Measured at room temperature after placing for 24±4 hrs. Conduct Temperature Cycling testing on the product after performing the Pi			
8.3	Temperature Cycling Reference JESD22-A104	Appearance : no damage. Inductance : within±10% of initial value DCR : within±15% of initial value and shall not exceed the specification value.	$\label{eq:constraint} \begin{array}{ c c c } \hline Conduct Temperature Cycling testing Post-Stress Electrical Tests as specif Unpowered Lower Temperature of the Chamber: -40°C(For Inductors/Transformers) Upper Temperature of the Chamber: and shall not exceed 125°C Condition for 1 cycle Step1: -40±2°C 30min Min. Step2: 125±2°C transition time 1min Step3: 125±2°C 30min Min. Step4: Dwell Time (Soak Time) 15 minutes minimum, 30 minutes minimum, 30 minutes minimum if compor Transition Time : 1 minute maximum Number of cycles : 1000 Measured at room temperature at lea$	ied in section 8.1 maximum specified operating n MAX onent weighs above 28g	g temperature	
8.4	Humidity Bias Reference MIL-STD-202 Method 103		Conduct Humidity Bias testing on th Post-Stress Electrical Tests as specif Unpowered(For Inductors/Transforme Humidity : 85±3% R.H, Temperature : 85°±2°C Duration : 1000hrs Min. Measured at room temperature after p	ied in section 8.1 ers)	e Pre- and	
8.5	High Temperature Operating Life Reference MIL-STD-202 Method 108		Conduct High Temperature Operating Life testing on the product the Pre- and Post-Stress Electrical Tests as specified in section Temperature : 110±2°C Upper Temperature of the Chamber: maximum specified operat (not including heat rise) at maximum rated power and shall not ef (For Inductors/Transformers) Duration : 1000hrs Min. with 100% rated current. Measured at room temperature after placing for 24±4 hrs.		.1 g temperature	
8.6	External Visual Reference MIL-STD-883 Method 2009	Appearance : no damage.	Inspect device construction, marking and workmanship. Pre and Post Electrical Test not required.			
8.7	Physical Dimension Reference JESD22-B100	According to the product specification size measurement.	Verify physical dimensions to the applicable component detail specification. Pre and Post Electrical Test not required.			
8.8	Terminal Strength (for axial and radial THT components) Reference MIL-STD-202 Method 211	Appearance : no damage. Inductance : within±10% of initial value DCR : within±15% of initial value and shall not exceed the specification value.	Test THT component lead integrity or Test Condition A (pull test) Nominal cross-sectional area(mm ²) ≤ 0.05 0.06 to 0.10 0.11 to 0.20 0.21 to 0.50 0.51 to 1.20 ≥ 1.20 Test Condition C (wire-lead bend test Section Modulus (Zx) (mm ³) $\leq 1.5x10^{-3}$ 1.6x10^3 to 1.2x10^2 1.3x10^2 to 0.5x10^1 0.01 to 0.20	Force (N) <u>1</u> <u>2.5</u> <u>5</u> <u>10</u> <u>20</u> <u>40</u>): Force (N) <u>0.5</u> <u>1.25</u> <u>2.5</u> <u>5</u> <u>5</u>		
			$\begin{array}{ c c c c c c }\hline\hline 0.6x10^{-1} \ to \ 1.9x10^{-1} \\\hline\hline > 1.9x10^{-1} \\\hline\hline For round terminations : ZX = (\pi d3)/3 \\\hline For strip terminations : ZX = (ba2)/6 w \\perpendicular to the bending axis, b is$	where is the thickness of the	rectangular strip	

TAI-TECH

Item Performance Test Condition 8-9 Resistance to Solvents Add an Aqueous wash chemical and follow internation and and composents 8-9 Reference Michanical Shock Add an Aqueous wash chemical and follow internation and and composents 8-10 Reference Michanical Shock Add an Aqueous wash chemical and follow internation and and composents 8-10 Reference Michanical Shock Add an Aqueous wash chemical and and taken in the composents 8-11 Reference Michanical Shock Add an Aqueous wash chemical and and taken in the composents 8-11 Reference Michanical Shock Add an Aqueous wash chemical and and taken in the composents 8-11 Reference Michanical Shock Add an Aqueous wash chemical and and taken in the composents 8-11 Reference Michanical Shock Add an Aqueous wash chemical and and taken in the composent i	
8.10 Reference ML-STD-202 Method 215 8.10 Mochanical Shock 8.10 Reference ML-STD-202 Method 213 8.11 Reference ML-STD-202 Method 213 8.12 Reference ML-STD-202 Method 213 8.11 Reference ML-STD-202 Method 213 8.12 Reference ML-STD-202 Method 214 8.11 Reference ML-STD-202 Method 213 8.12 Reference ML-STD-202 Method 214 8.12 Reference ML-STD-202 Method 214 8.12 Reference ML-STD-202 Method 216 8.12 Reference ML-STD-202 Method 216 8.12 Reference ML-STD-202 Method 216 8.12 Reference ML-STD-202 Method 210 8.12 Resistance to Soldering Heat	
8.10 Mechanical Shock 8.10 Reference MIL-STD-202 Method 213 8.11 Reference MIL-STD-202 Method 204 8.11 Reference MIL-STD-202 Method 204 8.11 Reference MIL-STD-202 Method 204 8.11 Reference MIL-STD-202 Method 204 8.12 Resistance to Soldering Heat 8.12	
8.10 Mechanical Shock 8.10 Reference ML-STD-202 Method 213 8.11 Vibration 8.11 Reference ML-STD-202 Method 204 8.12 Resistance to Soldering Heat 8.12 Resistance to So	
8.12 Resistance to Soldering Heat 8.12 Resistance to Soldering Heat 8.12 Resistance to Soldering Heat 8.12 Reference MIL-STD-202 Method 210	
8.11 Performence MIL-STD-202 Method 204 8.11 Reference MIL-STD-202 Method 204 8.12 Resistance to Soldering Heat	
8.11 Reference MIL-STD-202 Method 204 8.12 Appearance : no damage. Inductance : within ± 10% of initial value DCR : within ± 15% of initial value DCR : within ± 15% of initial value acceed the specification value. Test conditions: 12 cycles each of 3 orientations) 8.12 Resistance to Soldering Heat Relisence to Soldering Heat Equipment : Without in the specification value. 8.12 Resistance to Soldering Heat Relisence to Soldering Heat Image: Table of the specification value. 8.12 Reference Mill-STD-202 Method 210 Test conditions: 1 Toppida exceed the specification value.	
8.12 Resistance to Soldering Heat 8.12 Resistance to Soldering Heat 8.12 Reference MiL-STD-202 Method 210	
8.12 Resistance to Soldering Heat 8.12 Reference MIL-STD-202 Method 210	
Build and the second the specification valueUp Image: Solder temp)Image: So	
8.12 Resistance to Soldering Heat 8.12 Reference ML-STD-202 Method 210	
8.12 Resistance to Soldering Heat 8.12 Reference MIL-STD-202 Method 210 StdD : Condition K, time above 217° C, 60s-150s, Number of heat cycles : 3 Continental Image: StdD : Condition K, time above 217° C, 60s-150s, Number of heat cycles : 3 Continental Image: StdD : Condition K, time above 217° C, 60s-150s, Number of heat cycles : 3 Component Image: StdD : Condition K, time above 217° C, 60s-150s, Number of heat cycles : 3 Component Image: StdD : Condition K, time above 217° C, 60s-150s, Number of heat cycles : 3 Component Image: StdD : Condition K, time above 217° C, 60s-150s, Number of heat cycles : 3 Component Reference MIL-STD-202 Method 210 Image: StdD : Condition K, time above 217° C to peak temperature (Component Ramp up to Temin To Temma Tt. tt. Tpeak Tp ⁺ 250° to peak 1.6mm or Temin State 1.6mm 2.5mm and Volume < 30±0.1°C/s 1.6mm 2.5mm and Volume < 30±0.1°C/s 1.105 20°C 217°C 90s 250°C 25	
8.12 Resistance to Soldering Heat Reference MIL-STD-202 Method 210 Tanin Ts Tinkeness 1.6mm or Thickness 1.6mm -2.5mm 30 Volume 1.6mm or Thickness 1.6mm -2.5mm 30 Volume	
8.12 Resistance to Soldering Heat Reference MIL-STD-202 Method 210 Tamp up ramp up reflow process Size Ramp up to 150°C Thickness 1.6mm-2.5mm 30.0 ±0.0mm3 1.6mm-2.5mm 3.0 ±0.1°C/s 10°C 1.0mm-2.5mm 3.0 ±0.1°C/s 10°C 1.0mm-2.5mm 3.0 ±0.1°C/s 10°C	
8.12 Resistance to Soldering Heat Reference mamp down MIL-STD-202 Method 210 ramp up reference ramp up reflow process ramp up Thickness < 1.6mm or	
8.12 Resistance to Soldering Heat Reference MIL-STD-202 Method 210 ramp up reflow process remp up reflow process Thickness 150°C 1.6mm-2.5mm 3.0±0.1°C/s 1.10s 200°C 217°C 250°C 2.50°C 30s 30s	
8.12 Reference MIL-STD-202 Method 210 Image: Component Size ramp up reflow process Component Ramp up to Size Tsmin Ts Tsmax TL tL Tpesk* Tp* Z50°C 40s Advine < 350°C00mm3	
Image: State of the state	
$\begin{array}{ c c c c c c }\hline \hline \hline & \hline &$	
Component 150°C Tsmin Ts Tsmax TL tL Tpext 25°C tr peak Thickness (-1.6mm or Thickness 1.6mm-2.5mm and Volume 3.0±0.1°C/s (Thickness 3.0±0.1°C/s (Thickness 2.50°C 3.0±0.1°C/s (Thickness 2.50°C 3.0	
$\left \begin{array}{c c c c c c c c } & < 1.6mm \text{ or } \\ \hline Thickness \\ 1.6mm 2.5mm \\ and Volume < \\ 350mm 3 \\ \hline Thickness \\ 1.6mm 2.5mm \\ and Volume < \\ 350mm 3 \\ \hline Thickness \\ 1.6mm 2.5mm \\ and Volume < \\ 350mm 3 \\ \hline Thickness \\ 25000 \\ \hline Thicknes \\ 25000 \\ \hline Thickness \\ 2500 \\ \hline Thicknes \\ 2500 \\ \hline Thicknes \\ 2500 \\ \hline$	Ramp down
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
or Thickness specified ≥ torusage ≥ ≥ torusage ≥ 2.5mm 100°C 110s 200°C 217°C 90s 250°C ≥ 300s ∨olume in serial production serial production 110s 200°C 217°C 90s ≥ ≥ 30s 1.6mm-2.5mm 3.0°C(s) 3.0°C(s) 3.0°C(s) 100°C 30s 30s	ber sates s:3 s:3 s:3 s:3
Volume in serial <350mm3	
1.6mm-2.5mm 3.0°C/s)	
2000mm ³ or Thickness > 245℃	
2.5mm and Volume > 350mm3	
Table 1 : Minimum requirements for lead-free soldering *peak temperature is measured on the centre top of the component package	
**tp measured @ T peak-5°C	
Direct Contact and Air Discharge PASSIVE COMPONENT HBM ESD Discharge Waveform to a Coaxial Target Test method : AEC-Q200-002 Test mode : Contact Discharge	
Discharge level : 4 KV (Levěl : 2)	
8.13 Reference AEC-Q200-002	

Item		Performance		Test Condition				
8.14	Solderability Reference J-STD-002	More than 95% of the terminal electrode should be covered with solder.	 SMD : Method B1, Coatin Method D, Coatin Magnification 50x Pre and Post Elect 	ng Durability Category g Durability Category rical Test not require mounting/attach are Method A1 Reflow Soldering Tin-Silver- Copper Solder 5-10s 20°~45°	A A	Method D Lead-free Soldering Tin-Silver- Copper Solder 5-10s 20'~45'		
			Temperature Solder Immersion Time Speed of Immersion and Withdrawal	245±5°C 5+0/-0.5s 25±6mm/s	245±5°C 5+0/-0.5s 25±6mm/s	260±5° C 30+5/-0s 25±6mm/s		
8.15	Electrical Characterization	Refer Specification for Approval.	Mean and Standard	Parametrically test per lot and sample size requirements, summary to show Min, Max, Mean and Standard deviation at room as well as Min and Max operating temperatures. Pre and Post Electrical Test not required				
8.16	Flammability	In accordance with Referenced Standards.	Reference UL-94 or	Reference UL-94 or IEC 60695-11-5				
8.17	Board Flex(SMD) Reference AEC-Q200-005	Appearance : no damage. Inductance : within±10% of initial value DCR : within±15% of initial value and shall not exceed the specification value.	(IPC/JEDEC J-STD Place the 100mm X the component facir force which will benu shall be 60 (+ 5) sec Support	Preconditioning : run through reflow for 3 times. (IPC/JEDEC J-STD-020F Classification Reflow Profiles) Place the 100mm X 40mm board into a fixture similar to the one shown in below Figure with the component facing down. The apparatus shall consist of mechanical means to apply a force which will bend the board (D) x = 2 mm minimum. The duration of the applied forces shall be 60 (+ 5) sec. The force is to be applied only once to the board. Support Solder Chip Printed circuit board before testing 45±2 45±2 (KE212-4) Redus 340 Probe to exert bending force 1.8 Redus 340 Displacement Displacement				
8.18	Terminal Strength(SMD) Reference AEC-Q200-006		Kg) force to the side	of a device being ter be applied gradually radius 0,5 r	sted. This force shall be y as not to apply a sho	tested, apply a 17.7 N (1.1 e applied for 60 +1 seconds book to the component being wide thickness shear force		

Note : When there are questions concerning measurement result : measurement shall be made after 48 ± 2 hours of recovery under the standard condition.

9. Soldering Specifications

(1) Soldering

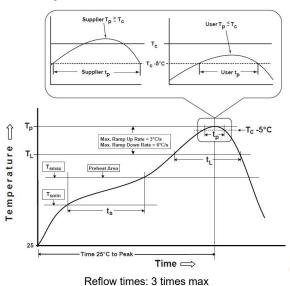
Mildly activated rosin fluxes are preferred. TAI-TECH terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

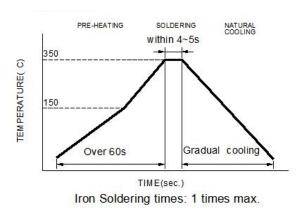
(2) Soldering Reflow:

Recommended temperature profiles for lead free re-flow soldering in Figure 1. Table 1.1&1.2 (J-STD-020F)

· Never contact the ceramic with the iron tip

(3) Iron Reflow:


- Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended.(Fig. 2)
- Preheat circuit and products to 150℃
 355℃ tip temperature (max)


ax) · 1.0mm tip diameter (max)

Use a 20 watt soldering iron with tip diameter of 1.0mm
 Limit soldering time to 4~5sec.

Fig.2 Iron soldering temperature profiles

Fig.1 Soldering Reflow

Soldering iron Method : 350± 5 $^\circ\!{\rm C}$ max

Table (1.1): Reflow Profiles						
Profile Type:	Pb-Free Assembly					
Preheat -Temperature Min(T _{smin}) -Temperature Max(T _{smax}) -Time(t _s)from(T _{smin} to T _{smax})	150℃ 200℃ 60-120seconds					
Ramp-up rate(T _L to T _p)	3℃/second max.					
Liquidus temperature(T _L) Time(t _L)maintained above T _L	217℃ 60-150 seconds					
Classification temperature(T _c)	See Table (1.2)					
Time(t_p) at Tc- $5^\circ\!\!{\rm C}$ (Tp should be equal to or less than Tc.)	*< 30 seconds					
Ramp-down rate(T_p to T_L)	6℃ /second max.					
Time 25° C to peak temperature	8 minutes max.					

Tp: maximum peak package body temperature, Tc: the classification temperature.

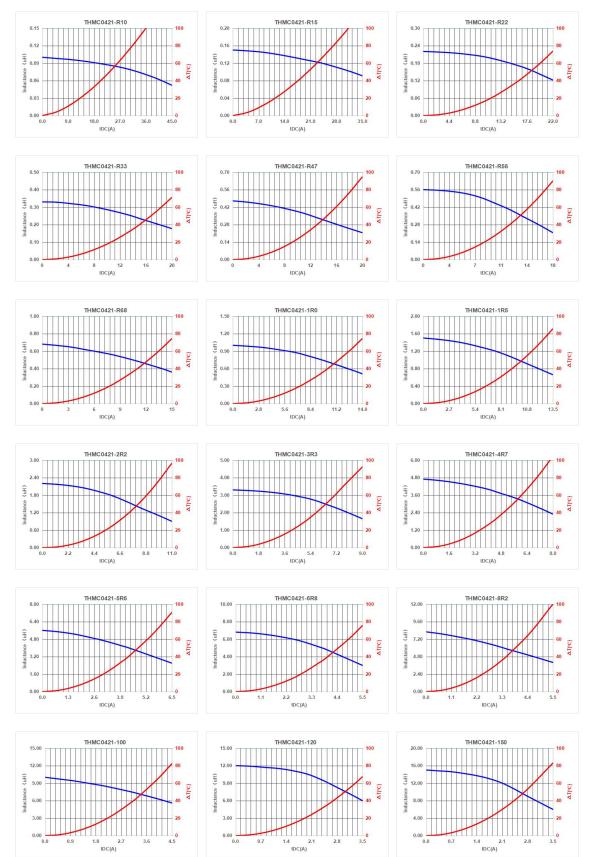
For user (customer) Tp should be equal to or less than Tc.

* Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.

Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)

	Package Thickness	Volume mm ³ <350	Volume mm ³ 350-2000	Volume mm ³ >2000
	<1.6mm	260°C	260°C	260°C
PB-Free Assembly	1.6-2.5mm	260°C	250°C	245°C
	≥2.5mm	250°C	245°C	245°C

Reflow is referred to standard IPC/JEDEC J-STD-020F.


10. Notes

- (1) When there are questions concerning measurement result : measurement shall be made after 48 \pm 2 hours of recovery under the standard condition
- (2) This power choke coil itself does not have any protective function in abnormal condition such as overload, short-circuit and open-circuit conditions, etc. Therefore, it shall be confirmed as the end product that there is no risk of smoking, fire, dielectric withstand voltage, insulation resistance, etc. in abnormal conditions to provide protective devices and/or protection circuit in the end product.
- (3) When this power choke coil was used in a similar or new product to the original one, sometimes it might not be able to satisfy the specifications due to different condition of use.
- (4) Dielectric withstanding test with higher voltage than specific value will damage insulating material and shorten its life.
- (5) This power choke coil must not be used in wet condition by water, coffee or any liquid because insulation strength becomes very low in this condition.
- (6) Please consult our company to confirm the reliability of the process required to wash or use or exposure to a chemical solvent used in this product.PCB washing tested to MIL-STD-202 Method, and dry it off immediately.
- (7) The rated current as listed is either the saturation current or the heating current depending on which value is lower.
- (8) If this power choke is dipped in the cleaning agent, such as toluene, xylene, ketone, and ether system, there is a possibility that the performance decreases greatly, and marking disappearnc.
- (9) The high power ultrasonic washing may damage the choke body.
- (10) Before use, the user should determine whether this product is suitable for their own design, Our company only guarantees that the product meets the requirements of this specification.

Application Notice

- Storage Conditions(component level)
- To maintain the solderability of terminal electrodes:
- 1. TAI-TECH products meet IPC/JEDEC J-STD-020F standard-MSL, level 1.
- Temperature and humidity conditions:Less than40 °C ,85%RH.
 Recommended products should be used within 12 months form the time of delivery.
- The packaging material should be kept where no chlorine or sulfur exists in the air.
- Transportation
- 1. Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- 2. The use of tweezers or vacuum pick up is strongly recommended for individual components.
- 3. Bulk handling should ensure that abrasion and mechanical shock are minimized.

11. Typical Performance Curves

