

Product Specification

XBLW SN74HC08

Quad 2-input And Gate

Description

The SN74HC08 is a quad 2-input AND gate. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC} .

Features

- Buffered inputs
- ➤ Wide operating voltage range: 2 V to 6 V
- ➤ Specified from -40°C to +125°C
- > Packaging information: DIP-14/SOP-14/TSSOP-14

Applications

- Combining power good signals
- Enable digital signals

Ordering Information

Product Model	Package Type	Marking	Packing	Packing Qty
XBLW SN74HC08N	DIP-14	74HC08N	Tube	1000Pcs/Box
XBLW SN74HC08DTR	SOP-14	74HC08	Tape	2500Pcs/Reel
XBLW SN74HC08TDTR	TSSOP-14	74HC08	Tape	3000Pcs/Reel

Block Diagram

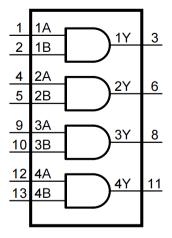


Figure 1. Logic symbol

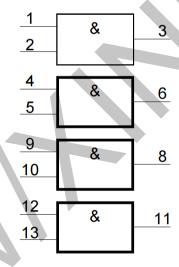


Figure 2. IEC logic symbol

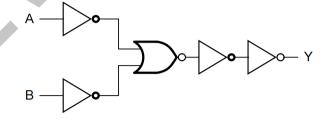
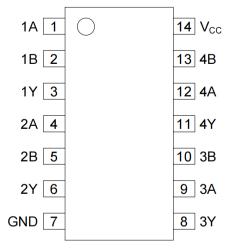



Figure 3. Logic diagram for one gate

Pin Configurations

Pin Description

Pin No.	Pin Name	Description
1	1A	data input
2	1B	data input
3	1Y	data output
4	2A	data input
5	2B	data input
6	2Y	data output
7	GND	ground (0V)
8	3Y	data output
9	3A	data input
10	3B	data input
11	4Y	data output
12	4A	data input
13	4B	data input
14	V_{cc}	supply voltage

Function Table

In	Input			
nA	nB	nY		
L	L	L		
L	Н	L		
Н	L	L		
Н	Н	Н		

Note: H=HIGH voltage level; L=LOW voltage level.

Electrical Parameter

Absolute Maximum Ratings

(Voltages are referenced to GND (ground=0V), unless otherwise specified.)

•						
Parameter	Symbol	Co	Conditions		Max.	Unit
supply voltage	V _{CC}		-	-0.5	+7	V
input clamping current	\mathbf{I}_{IK}	$V_{\rm I} < -0.5V$	or $V_{\rm I} > V_{\rm CC} + 0.5V$	-	±20	mA
output clamping current	I_{OK}	$V_0 < -0.5V$	or $V_0 > V_{CC} + 0.5V$	-	±20	mA
output current	I_{O}	$-0.5V < V_{O} < V_{CC} + 0.5V$		-	±25	mA
supply current	\mathbf{I}_{CC}		-	-	50	mA
ground current	${ m I}_{\sf GND}$		-	-50	1	mA
total power dissipation	P _{tot}		-	-	500	mW
storage temperature	T _{stg}	-		-65	+150	°C
Soldering temperature	Tı	10s	DIP	24	1 5	°C
Soldering temperature	IL	105	SOP/TSSOP	26	50	°C

Recommended Operating Conditions

recommended oper	acing contactions					
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
supply voltage	V_{CC}	-	2.0	5.0	6.0	V
input voltage	V_{I}		0	-	V _{CC}	V
output voltage	Vo	-	0	-	V _{CC}	V
		$V_{CC}=2.0V$	-	-	625	ns/V
input transition rise and fall rate	Δt/ΔV	V _{cc} =4.5V	-	1.67	139	ns/V
and fail rate		V _{CC} =6.0V	-	-	83	ns/V
ambient temperature	T _{amb}	-	-40	-	+125	°C

Electrical Characteristics

DC Characteristics 1

(T_{amb}=25°C, voltages are referenced to GND (ground=0V), unless otherwise specified.)

_					_			
Parameter	Symbol	(Conditions	Min.	Тур.	Max.	Unit	
UTCU Inval		V _{CC} =2.0V		1.5	1.2	_	V	
HIGH-level input voltage	$V_{\mathtt{IH}}$		V _{CC} =4.5V		2.4	_	V	
input voitage	V IH		V _{CC} =6.0V	4.2	3.2	_	V	
1014/1			V _{CC} =2.0V	-	0.8	0.5	V	
LOW-level input voltage	V_{IL}		V _{CC} =4.5V	-	2.1	1.35	V	
voltage	V IL		V _{CC} =6.0V	-	2.8	1.8	V	
			I _O =-20uA; V _{CC} =2.0V	1.9	2.0	-	V	
LITCH Lavard			I _O =-20uA; V _{CC} =4.5V	4.4	4.5	- //	V	
HIGH-level output voltage	V_{OH}	V_{OH}	V _I =V _{IH} or	I _O =-20uA; V _{CC} =6.0V	5.9	6.0		V
output voitage		V_{IL}	I_{O} =-4.0mA; V_{CC} =4.5V	3.98	4.32	-	V	
		-11	$I_0 = -5.2 \text{mA}; V_{CC} = 6.0 \text{V}$	5.48	5.81	-	V	
			I _O =20uA; V _{CC} =2.0V		0	0.1	V	
LOW Land			I_0 =20uA; V_{cc} =4.5V	- 1	0	0.1	V	
LOW-level output voltage	V_{OL}	V _I =V _{IH} or	$I_0=20uA; V_{CC}=6.0V$		0	0.1	V	
output voitage		VI-VIH OI	I_{O} =4.0mA; V_{CC} =4.5V	-	0.15	0.26	V	
		-11	$I_0=5.2$ mA; $V_{CC}=6.0$ V	_	0.16	0.26	V	
input leakage current	$\mathbf{I}_{\mathbf{I}}$	$V_{\rm I}$ = V_{CC} or GND; V_{CC} =6.0 V		-	-	±1	uA	
supply current	\mathbf{I}_{CC}	$V_{\rm I} = V_{\rm CC}$ or C	SND; $I_0=0A$; $V_{CC}=6.0V$	-	-	2.0	uA	
input capacitance	CI		-	-	3.5	_	pF	

DC Characteristics 2

 $(T_{amb}=-40$ °C to +85°C, voltages are referenced to GND (ground=0V), unless otherwise specified.)

Parameter	Symbol		Conditions	Min.	Тур.	Max.	Unit
LITOLLI		V _{CC} =2.0V		1.5	-	-	٧
HIGH-level input voltage	V_{IH}		V _{CC} =4.5V	3.15	-	-	V
input voitage	VIH		V _{CC} =6.0V	4.2	-	-	V
1.004/ 1-21			V _{CC} =2.0V	-	-	0.5	V
LOW-level input voltage	$V_{\mathtt{IL}}$		V _{CC} =4.5V	-	-	1.35	V
input voitage	V IL		V _{CC} =6.0V	-	-	1.8	V
			I_{O} =-20uA; V_{CC} =2.0V	1.9	-	-	٧
LITCULIS			I _O =-20uA; V _{CC} =4.5V	4.4	-	- 1	V
HIGH-level output	V_{OH}	V_{OH} $V_{I}=V_{IH}$ or V_{IL}	I _O =-20uA; V _{CC} =6.0V	5.9	-	-	٧
voltage			I_{O} =-4.0mA; V_{CC} =4.5V	3.84	-	-	V
voltage			I_{O} =-5.2mA; V_{CC} =6.0V	5.34	-	7	V
			I _O =20uA; V _{CC} =2.0V	-	-	0.1	V
LOW-level			I _O =20uA; V _{CC} =4.5V	-	-	0.1	V
output	V_{OL}	$V_{I}=V_{IH}$ or V_{IL}	I _O =20uA; V _{CC} =6.0V	-	/ -	0.1	V
voltage			I _O =4.0mA; V _{CC} =4.5V	-	-	0.33	V
			$I_0=5.2$ mA; $V_{CC}=6.0$ V		-	0.33	V
input leakage current	II	$V_{\rm I} = V_{\rm CC}$ or GND; $V_{\rm CC} = 6.0 V$		-	-	±1	uA
supply current	\mathbf{I}_{CC}	V _I =V _{CC} or G	ND; I _O =0A; V _{CC} =6.0V	-	-	20	uA

DC Characteristics 3

(T_{amb}=-40°C to +125°C, voltages are referenced to GND (ground=0V), unless otherwise specified.)

Parameter	Symbol	C	onditions	Min.	Тур.	Max.	Unit
LITCULL		,	1.5	-	_	٧	
HIGH-level input voltage	$V_{\mathtt{IH}}$,	V _{CC} =4.5V	3.15	-	_	V
input voitage	V IH	,	V _{CC} =6.0V	4.2	-	-	V
LOWLessel		,	V _{CC} =2.0V	-	-	0.5	V
LOW-level input voltage	V_{IL}	,	V _{CC} =4.5V	-	-	1.35	V
input voitage	V IL	,	V_{CC} =6.0 V		- 4	1.8	V
			I_{O} =-20uA; V_{CC} =2.0V	1.9	_	-	V
		V_{OH} $V_{I}=V_{IH}$ or V_{IL}	I _O =-20uA; V _{CC} =4.5V	4.4	-	-	V
HIGH-level	V_{OH}		I_{O} =-20uA; V_{CC} =6.0V	5.9	_	-	V
output voltage			I_{O} =-4.0mA; V_{CC} =4.5V	3.7	-	-	V
			I_0 =-5.2mA; V_{CC} =6.0V	5.2	-	-	V
			I_{O} =20uA; V_{CC} =2.0V		-	0.1	V
LOW level			I_0 =20uA; V_{CC} =4.5V	-	-	0.1	V
LOW-level output voltage	V_{OL}	$V_I = V_{IH}$ or V_{IL}	I_0 =20uA; V_{CC} =6.0V	-	-	0.1	V
output voltage			I_0 =4.0mA; V_{CC} =4.5V	-	-	0.4	V
			$I_0=5.2$ mA; $V_{CC}=6.0$ V	-	_	0.4	V
input leakage current	$\mathbf{I}_{\mathbf{I}}$	V _I =V _{CC} o	-	-	±1	uA	
supply current	\mathbf{I}_{CC}	$V_I = V_{CC}$ or GI	$ND; I_0 = 0A; V_{CC} = 6.0V$	_	_	40	uA

AC Characteristics 1

(T_{amb}=25°C, voltages are referenced to GND (ground=0V), unless otherwise specified.)

Parameter	Symbol	Coi	nditions	Min.	Тур.	Max.	Unit
A - D			$V_{CC}=2.0V$	-	25	90	ns
nA, nB to nY	+		V_{CC} =4.5 V	-	9	18	ns
propagation delay	t_{pd}	see Figure 5 ^[1]	$V_{CC}=5.0V;C_L=15pF$	-	7	-	ns
aciay			$V_{CC}=6.0V$	-	7	15	ns
			$V_{CC}=2.0V$	-	19	75	ns
transition time	t_t	see Figure 5 ^[2]	V_{CC} =4.5 V	-	7	15	ns
		see rigure 3	$V_{CC}=6.0V$	-	6	13	ns
power dissipation capacitance	C_{PD}		package; ND to $V_{ m cc}^{[3]}$	- (10	1	pF

Note:

- [1] t_{pd} is the same as t_{PLH} and t_{PHL} .
- [2] t_t is the same as t_{THL} and t_{TLH} .
- [3] C_{PD} is used to determine the dynamic power dissipation (P_D in uW).

 $P_D = (C_{PD} \times V_{CC}^2 \times f_i \times N) + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where: $f_i = \text{input frequency in MHz}$; $f_o = \text{output frequency in MHz}$;

C_L=output load capacitance in pF; V_{CC}=supply voltage in V;

N=number of inputs switching; $\Sigma(C_L \times V_{CC}^2 \times f_o)$ =sum of outputs.

AC Characteristics 2

(T_{amb}=-40°C to +85°C, voltages are referenced to GND (ground=0V), unless otherwise specified.)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
			$V_{CC}=2.0V$	-	-	115	ns
nA, nB to nY	t_{pd}	see Figure 5 ^[1]	V _{CC} =4.5V	-	-	23	ns
propagation delay	F	see rigare s	V _{CC} =6.0V	-	-	20	ns
	t _t		$V_{CC}=2.0V$	-	-	95	ns
transition time		see Figure 5 ^[2]	$V_{CC}=4.5V$	-	-	19	ns
			$V_{CC}=6.0V$	-	-	16	ns

Note:

- [1] t_{pd} is the same as t_{PLH} and t_{PHL} .
- [2] t_t is the same as t_{THL} and t_{TLH} .

AC Characteristics 3

(T_{amb}=-40°C to +125°C, voltages are referenced to GND (ground=0V), unless otherwise specified.)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
			$V_{CC}=2.0V$	-	-	135	ns
nA, nB to nY	t_{pd}		$V_{CC}=4.5V$	-	-	27	ns
propagation delay	, -	see Figure 5 ^[1]	$V_{CC}=6.0V$	-	-	23	ns
			$V_{CC}=2.0V$	-	-	110	ns
transition time	t_t	see Figure 5 ^[2]	$V_{CC}=4.5V$	-	-	22	ns
		see rigure 5.	$V_{CC}=6.0V$	-	-	19	ns

Note:

- [1] t_{pd} is the same as t_{PLH} and t_{PHL} .
- [2] t_t is the same as t_{THL} and t_{TLH} .

Testing Circuit

AC Testing Circuit

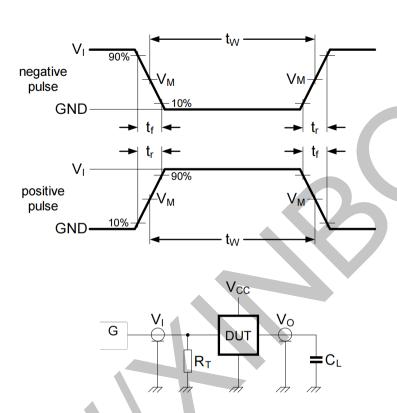


Figure 4. Test circuit for measuring switching times

Definitions for test circuit:

 C_L =load capacitance including jig and probe capacitance.

 R_T =termination resistance should be equal to the output impedance Z_\circ of the pulse generator.

AC Testing Waveforms

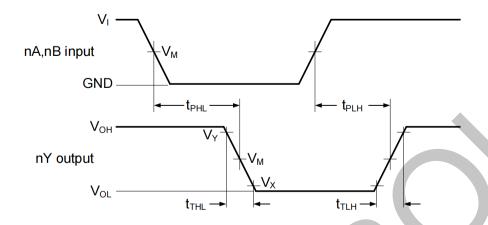
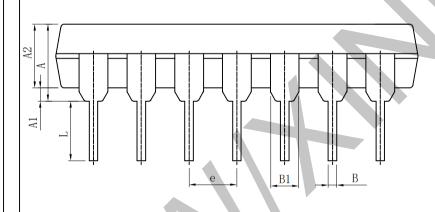


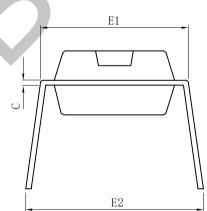
Figure 5. Input to output propagation delays

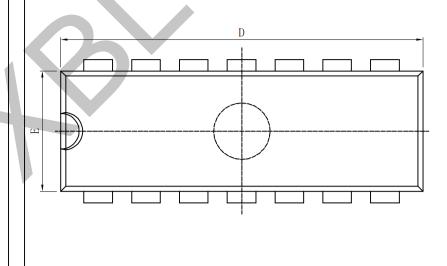
Measurement Points

Tymo	Input	Output V _M V _X V _Y			
Туре	V _M				
SN74HC08	$0.5 \times V_{CC}$	0.5×V _{CC}	0.1×V _{CC}	0.9×V _{cc}	

Test Data

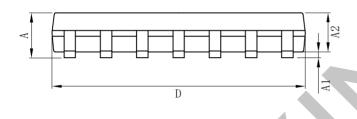

	In	put	Load	Test
Туре	Vı	t _r ,t _f	C _L	
SN74HC08	V _{CC}	6.0ns	15pF, 50pF	t _{PLH} , t _{PHL}

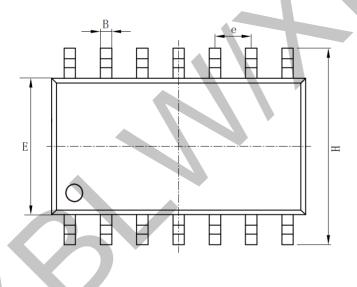


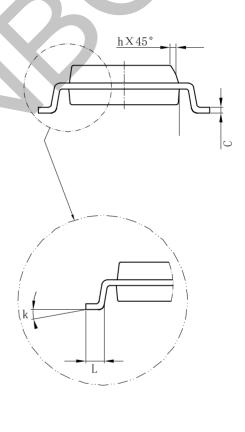

Package Information

· DIP-14

Dimensions In Millimeters		Size _	Dimensions In Inches	
Min(mm)	Max(mm)	Symbol	Min(in)	Max(in)
3. 710	4.310	A	0. 146	0. 170
0.510		A1	0.020	
3. 200	3. 600	A2	0.126	0.142
0.380	0. 570	В	0.015	0.022
1. 524 (BSC)		B1	0. 060 (BSC)	
0. 204	0.360	С	0.008	0.014
18.800	19.200	D	0. 740	0.756
6. 200	6.600	Е	0. 244	0.260
7.320	7.920	E1	0. 288	0.312
2. 540 (BSC)		e	0. 100 (BSC)	
3.000	3. 600	L	0. 118	0. 142
8. 400	9.000	E2	0. 331	0.354
	Min (mm) 3. 710 0. 510 3. 200 0. 380 1. 5 0. 204 18. 800 6. 200 7. 320 2. 5 3. 000	Min (mm) Max (mm) 3. 710 4. 310 0. 510 3. 600 3. 200 3. 600 0. 380 0. 570 1. 524 (BSC) 0. 204 0. 360 18. 800 19. 200 6. 200 6. 600 7. 320 7. 920 2. 540 (BSC) 3. 000 3. 600	Min (mm) Max (mm) Symbol 3. 710 4. 310 A 0. 510 A1 A1 3. 200 3. 600 A2 0. 380 0. 570 B 1. 524 (BSC) B1 0. 204 0. 360 C 18. 800 19. 200 D 6. 200 6. 600 E 7. 320 7. 920 E1 2. 540 (BSC) e 3. 000 3. 600 L	Min (mm) Max (mm) Symbol Min (in) 3.710 4.310 A 0.146 0.510 A1 0.020 3.200 3.600 A2 0.126 0.380 0.570 B 0.015 1.524 (BSC) B1 0. 0.204 0.360 C 0.008 18.800 19.200 D 0.740 6.200 6.600 E 0.244 7.320 7.920 E1 0.288 2.540 (BSC) e 0. 3.000 3.600 L 0.118







· SOP-14

Size	Dimensions In Millimeters		Size	Dimensions In Inches	
Symbol	Min(mm)	Max(mm)	Symbol	Min(in)	Max(in)
A	1.350	1.750	A	0.050	0.068
A1	0.100	0.250	A1	0.004	0.009
A2	1.100	1.650	A2	0.040	0. 060
В	0.330	0.510	В	0.010	0.020
С	0.190	0.250	С	0.007	0. 009
D	8.550	8.750	D	0.330	0. 340
Е	3.800	4.000	Е	0. 150	0. 150
е	1. 27		е	0.05	
Н	5.800	6.200	Н	0. 220	0. 240
h	0.250	0.500	h	0.009	0. 020
L	0.400	1.270	L	0.015	0. 050
k	8° (max)		k	8° ((max)

· TSS0P-14

Size	Dimensions In	n Millimeters	Size	Dimensions	In Inches
Symbol	Min (mm)	Max(mm)	Symbol	Min(in)	Max(in)
A		1.200	A		0.047
A1	0.050	0.150	A1	0.002	0.006
A2	0.800	1.050	A2	0.031	0.041
b	0. 190	0.300	b	0.007	0.012
c	0. 090	0.200	С	0.004	0. 0089
D	4.900	5. 100	D	0. 193	0. 201
E	6. 200	6.600	E	0. 244	0. 260
E1	4. 300	4. 500	E1	0. 169	0.176
e	0. (e	0. 025	56
L	0. 450	0.750	L	0.018	0.030
L1	1.		L1	0. 039	
k	0°	8°	k	0° 0.038	8°
PIN #1 IDEN	b e				-c
V V			AI		O. 25 mm GAGE PLANE

Statement

- XBLW reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using XBLW products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- XBLW product has not been licensed for life support, military and aerospace applications, and therefore XBLW is not responsible for any consequences arising from its use in these areas.
- If any or all XBLW products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- The specifications of any and all XBLW products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- XBLW documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. XBLW assumes no responsibility or liability for altered documents.
- XBLW is committed to becoming the preferred semiconductor brand for customers, and XBLW will strive to provide customers with better performance and better quality products.

单击下面可查看定价,库存,交付和生命周期等信息

>>XBLW(芯伯乐)